These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33961022)

  • 21. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein contact map refinement for improving structure prediction using generative adversarial networks.
    Maddhuri Venkata Subramaniya SR; Terashi G; Jain A; Kagaya Y; Kihara D
    Bioinformatics; 2021 Oct; 37(19):3168-3174. PubMed ID: 33787852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A stacked meta-ensemble for protein inter-residue distance prediction.
    Rahman J; Newton MAH; Hasan MAM; Sattar A
    Comput Biol Med; 2022 Sep; 148():105824. PubMed ID: 35863250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling.
    Singh J; Paliwal K; Litfin T; Singh J; Zhou Y
    Bioinformatics; 2022 Aug; 38(16):3900-3910. PubMed ID: 35751593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scoring protein sequence alignments using deep learning.
    Shrestha B; Adhikari B
    Bioinformatics; 2022 May; 38(11):2988-2995. PubMed ID: 35385080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein threading using residue co-variation and deep learning.
    Zhu J; Wang S; Bu D; Xu J
    Bioinformatics; 2018 Jul; 34(13):i263-i273. PubMed ID: 29949980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DISTEMA: distance map-based estimation of single protein model accuracy with attentive 2D convolutional neural network.
    Chen X; Cheng J
    BMC Bioinformatics; 2022 Apr; 23(Suppl 3):141. PubMed ID: 35439931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein inter-residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in CASP14.
    Li Y; Zhang C; Zheng W; Zhou X; Bell EW; Yu DJ; Zhang Y
    Proteins; 2021 Dec; 89(12):1911-1921. PubMed ID: 34382712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved estimation of model quality using predicted inter-residue distance.
    Ye L; Wu P; Peng Z; Gao J; Liu J; Yang J
    Bioinformatics; 2021 Nov; 37(21):3752-3759. PubMed ID: 34473228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of protein model structure accuracy estimation in CASP13: Challenges in the era of deep learning.
    Won J; Baek M; Monastyrskyy B; Kryshtafovych A; Seok C
    Proteins; 2019 Dec; 87(12):1351-1360. PubMed ID: 31436360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.
    Guo Z; Hou J; Cheng J
    Proteins; 2021 Feb; 89(2):207-217. PubMed ID: 32893403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep graph learning of inter-protein contacts.
    Xie Z; Xu J
    Bioinformatics; 2022 Jan; 38(4):947-953. PubMed ID: 34755837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SPOT-1D-Single: improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning.
    Singh J; Litfin T; Paliwal K; Singh J; Hanumanthappa AK; Zhou Y
    Bioinformatics; 2021 Oct; 37(20):3464-3472. PubMed ID: 33983382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction.
    Chen C; Wu T; Guo Z; Cheng J
    Proteins; 2021 Jun; 89(6):697-707. PubMed ID: 33538038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA inter-nucleotide 3D closeness prediction by deep residual neural networks.
    Sun S; Wang W; Peng Z; Yang J
    Bioinformatics; 2021 May; 37(8):1093-1098. PubMed ID: 33135062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning.
    Jing X; Zeng H; Wang S; Xu J
    Methods Mol Biol; 2020; 2074():67-80. PubMed ID: 31583631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CGLFold: a contact-assisted de novo protein structure prediction using global exploration and loop perturbation sampling algorithm.
    Liu J; Zhou XG; Zhang Y; Zhang GJ
    Bioinformatics; 2020 Apr; 36(8):2443-2450. PubMed ID: 31860059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.