BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33961074)

  • 21. Production of D-lactic acid by bacterial fermentation of rice starch.
    Fukushima K; Sogo K; Miura S; Kimura Y
    Macromol Biosci; 2004 Nov; 4(11):1021-7. PubMed ID: 15529396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal.
    Wang L; Zhao B; Li F; Xu K; Ma C; Tao F; Li Q; Xu P
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1009-17. PubMed ID: 21042797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-carbon loss long-term continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50.
    Abdel-Rahman MA; Tan J; Tashiro Y; Zendo T; Sakai K; Sonomoto K
    Biotechnol Bioeng; 2020 Jun; 117(6):1673-1683. PubMed ID: 32086810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mn²⁺/Mg ²⁺-dependent pyruvate kinase from a D-lactic acid-producing bacterium Sporolactobacillus inulinus: characterization of a novel Mn²⁺-mediated allosterically regulated enzyme.
    Zheng L; Xu T; Bai Z; He B
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1583-93. PubMed ID: 23695776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate.
    Subramanian MR; Talluri S; Christopher LP
    Microb Biotechnol; 2015 Mar; 8(2):221-9. PubMed ID: 24894833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria.
    Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose and sucrose fermenting capacity of homofermentative lactic acid bacteria used as starters in fermented salads.
    Bonestroo MH; Kusters BJ; de Wit JC; Rombouts FM
    Int J Food Microbiol; 1992; 15(3-4):365-76. PubMed ID: 1419542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity.
    Yang X; Lai Z; Lai C; Zhu M; Li S; Wang J; Wang X
    Biotechnol Biofuels; 2013 Aug; 6(1):124. PubMed ID: 23985133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli.
    Wang Y; Tian T; Zhao J; Wang J; Yan T; Xu L; Liu Z; Garza E; Iverson A; Manow R; Finan C; Zhou S
    Biotechnol Lett; 2012 Nov; 34(11):2069-75. PubMed ID: 22791225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid.
    Abdel-Rahman MA; Tashiro Y; Zendo T; Shibata K; Sonomoto K
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1039-49. PubMed ID: 21061005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards efficient production of highly optically pure d-lactic acid from lignocellulosic hydrolysates using newly isolated lactic acid bacteria.
    Alexandri M; Hübner D; Schneider R; Fröhling A; Venus J
    N Biotechnol; 2022 Dec; 72():1-10. PubMed ID: 35981701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmentally Friendly Production of D(-) Lactic Acid by
    Michelz Beitel S; Fontes Coelho L; Sass DC; Contiero J
    Int J Microbiol; 2017; 2017():4851612. PubMed ID: 29081803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients.
    Wang Y; Li K; Huang F; Wang J; Zhao J; Zhao X; Garza E; Manow R; Grayburn S; Zhou S
    Bioresour Technol; 2013 Nov; 148():394-400. PubMed ID: 24063823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a Novel D-Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746.
    Sansatchanon K; Sudying P; Promdonkoy P; Kingcha Y; Visessanguan W; Tanapongpipat S; Runguphan W; Kocharin K
    J Microbiol; 2023 Sep; 61(9):853-863. PubMed ID: 37707762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.