These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33961192)
1. A GIS-based groundwater pollution potential using DRASTIC, modified DRASTIC, and bivariate statistical models. Khosravi K; Sartaj M; Karimi M; Levison J; Lotfi A Environ Sci Pollut Res Int; 2021 Sep; 28(36):50525-50541. PubMed ID: 33961192 [TBL] [Abstract][Full Text] [Related]
2. Assessment of groundwater vulnerability in an urban area: a comparative study based on DRASTIC, EBF, and LR models. Mohammaddost A; Mohammadi Z; Rezaei M; Pourghasemi HR; Farahmand A Environ Sci Pollut Res Int; 2022 Oct; 29(48):72908-72928. PubMed ID: 35619000 [TBL] [Abstract][Full Text] [Related]
3. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Sadat-Noori M; Ebrahimi K Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205 [TBL] [Abstract][Full Text] [Related]
4. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Khosravi K; Sartaj M; Tsai FT; Singh VP; Kazakis N; Melesse AM; Prakash I; Tien Bui D; Pham BT Sci Total Environ; 2018 Nov; 642():1032-1049. PubMed ID: 30045486 [TBL] [Abstract][Full Text] [Related]
5. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. Noori R; Ghahremanzadeh H; Kløve B; Adamowski JF; Baghvand A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(1):89-100. PubMed ID: 30596317 [TBL] [Abstract][Full Text] [Related]
6. Reciprocal analysis of groundwater potentiality and vulnerability modeling in the Bahabad Plain, Iran. Atashi Yazdi SS; Motamedvaziri B; Hosseini SZ; Ahmadi H Environ Sci Pollut Res Int; 2023 Mar; 30(14):39586-39604. PubMed ID: 36596973 [TBL] [Abstract][Full Text] [Related]
7. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology. Mogaji KA; Lim HS Environ Monit Assess; 2017 Jul; 189(7):321. PubMed ID: 28593561 [TBL] [Abstract][Full Text] [Related]
8. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Barzegar R; Asghari Moghaddam A; Adamowski J; Nazemi AH Environ Sci Pollut Res Int; 2019 Mar; 26(8):8325-8339. PubMed ID: 30706265 [TBL] [Abstract][Full Text] [Related]
9. A GIS-based approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Bou-Areg and Gareb aquifers, northeastern Morocco. Elmeknassi M; El Mandour A; Elgettafi M; Himi M; Tijani R; El Khantouri FA; Casas A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51612-51631. PubMed ID: 33990916 [TBL] [Abstract][Full Text] [Related]
10. Assessing groundwater vulnerability potential using modified DRASTIC in Ajabshir Plain, NW of Iran. Asghari Moghaddam A; Nouri Sangarab S; Kadkhodaie Ilkhchi A Environ Monit Assess; 2023 Mar; 195(4):497. PubMed ID: 36947260 [TBL] [Abstract][Full Text] [Related]
11. Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Jamrah A; Al-Futaisi A; Rajmohan N; Al-Yaroubi S Environ Monit Assess; 2008 Dec; 147(1-3):125-38. PubMed ID: 18095181 [TBL] [Abstract][Full Text] [Related]
12. GIS-based multicriteria and artificial neural network (ANN) investigation for the assessment of groundwater vulnerability and pollution hazard in the Braga shallow aquifer (Central Tunisia): A critical review of generic and modified DRASTIC models. Smida H; Tarki M; Gammoudi N; Dassi L J Contam Hydrol; 2023 Nov; 259():104245. PubMed ID: 37769359 [TBL] [Abstract][Full Text] [Related]
13. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy. Torkashvand M; Neshat A; Javadi S; Yousefi H Environ Sci Pollut Res Int; 2021 Sep; 28(34):46704-46724. PubMed ID: 33201500 [TBL] [Abstract][Full Text] [Related]
14. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan. Liang CP; Jang CS; Liang CW; Chen JS Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27886103 [TBL] [Abstract][Full Text] [Related]
15. A modified DRASTIC model for groundwater vulnerability assessment using connecting path and analytic hierarchy process methods. Baki AM; Ghavami SM Environ Sci Pollut Res Int; 2023 Nov; 30(51):111270-111283. PubMed ID: 37812345 [TBL] [Abstract][Full Text] [Related]
16. Assessment of groundwater vulnerability to nitrates using the GIS-based DRASTIC and SI methods: a case study in Zacharo area, Greece. Panagopoulos GP; Katsanou KN; Barouchas PE Environ Monit Assess; 2023 Jan; 195(2):286. PubMed ID: 36626097 [TBL] [Abstract][Full Text] [Related]
17. Assessment of groundwater intrinsic vulnerability using GIS-based DRASTIC method in District Haripur, Khyber Pakhtunkhwa, Pakistan. Ahmed S; Qadir A; Khan MA; Khan T; Zafar M Environ Monit Assess; 2021 Jul; 193(8):487. PubMed ID: 34245365 [TBL] [Abstract][Full Text] [Related]
18. Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Saravanan S; Pitchaikani S; Thambiraja M; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M Environ Monit Assess; 2022 Nov; 195(1):57. PubMed ID: 36326917 [TBL] [Abstract][Full Text] [Related]
20. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS. Al-Abadi AM; Pradhan B; Shahid S Environ Monit Assess; 2015 Oct; 188(10):549. PubMed ID: 27600115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]