These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33961342)

  • 21. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.
    Dedryvère R; Leroy S; Martinez H; Blanchard F; Lemordant D; Gonbeau D
    J Phys Chem B; 2006 Jul; 110(26):12986-92. PubMed ID: 16805604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries.
    Rinkel BLD; Vivek JP; Garcia-Araez N; Grey CP
    Energy Environ Sci; 2022 Aug; 15(8):3416-3438. PubMed ID: 36091097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Approaching the maximum capacity of nickel-rich LiNi
    Pham HQ; Hwang EH; Kwon YG; Song SW
    Chem Commun (Camb); 2019 Jan; 55(9):1256-1258. PubMed ID: 30632566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium-ion transport through a tailored disordered phase on the LiNi0.5 Mn1.5 O4 surface for high-power cathode materials.
    Jo MR; Kim YI; Kim Y; Chae JS; Roh KC; Yoon WS; Kang YM
    ChemSusChem; 2014 Aug; 7(8):2248-54. PubMed ID: 24924807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance.
    Heckmann A; Krott M; Streipert B; Uhlenbruck S; Winter M; Placke T
    Chemphyschem; 2017 Jan; 18(1):156-163. PubMed ID: 27862878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte.
    Chen S; Xiang Y; Zheng G; Liao Y; Ren F; Zheng Y; He H; Zheng B; Liu X; Xu N; Luo M; Zheng J; Yang Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27794-27802. PubMed ID: 32442365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-flammable liquid electrolytes for safe batteries.
    Gond R; van Ekeren W; Mogensen R; Naylor AJ; Younesi R
    Mater Horiz; 2021 Nov; 8(11):2913-2928. PubMed ID: 34549211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adiponitrile-Lithium Bis(trimethylsulfonyl)imide Solutions as Alkyl Carbonate-free Electrolytes for Li
    Farhat D; Ghamouss F; Maibach J; Edström K; Lemordant D
    Chemphyschem; 2017 May; 18(10):1333-1344. PubMed ID: 28231422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of Surface Doping for Mitigating Transition Metal Dissolution in LiNi
    Lim JM; Oh RG; Kim D; Cho W; Cho K; Cho M; Park MS
    ChemSusChem; 2016 Oct; 9(20):2967-2973. PubMed ID: 27650134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte.
    Smith JW; Lam RK; Sheardy AT; Shih O; Rizzuto AM; Borodin O; Harris SJ; Prendergast D; Saykally RJ
    Phys Chem Chem Phys; 2014 Nov; 16(43):23568-75. PubMed ID: 25175723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun Spinel LiNi
    Liu J; Liu W; Ji S; Zhou Y; Hodgson P; Li Y
    Chempluschem; 2013 Jul; 78(7):636-641. PubMed ID: 31986618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fire-Preventing LiPF
    Chung GJ; Han J; Song SW
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42868-42879. PubMed ID: 32897056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sol-gel synthesis of aliovalent vanadium-doped LiNi(0.5)Mn(1.5)O(4) cathodes with excellent performance at high temperatures.
    Kim MC; Nam KW; Hu E; Yang XQ; Kim H; Kang K; Aravindan V; Kim WS; Lee YS
    ChemSusChem; 2014 Mar; 7(3):829-34. PubMed ID: 24399460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries.
    Jin T; Wang Y; Hui Z; Qie B; Li A; Paley D; Xu B; Wang X; Chitu A; Zhai H; Gong T; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(19):17333-17340. PubMed ID: 31013429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives.
    Han JG; Hwang E; Kim Y; Park S; Kim K; Roh DH; Gu M; Lee SH; Kwon TH; Kim Y; Choi NS; Kim BS
    ACS Appl Mater Interfaces; 2020 May; 12(21):24479-24487. PubMed ID: 32368903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Performance Cells Containing Lithium Metal Anodes, LiNi
    Salitra G; Markevich E; Afri M; Talyosef Y; Hartmann P; Kulisch J; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19773-19782. PubMed ID: 29787244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge-Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium-Sulfur Batteries.
    Suriyakumar S; Kathiresan M; Stephan AM
    ACS Omega; 2019 Feb; 4(2):3894-3903. PubMed ID: 31459600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.
    Elia GA; Ulissi U; Mueller F; Reiter J; Tsiouvaras N; Sun YK; Scrosati B; Passerini S; Hassoun J
    Chemistry; 2016 May; 22(20):6808-14. PubMed ID: 26990320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.