These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 33961399)
41. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. Goc A; Sumera W; Rath M; Niedzwiecki A PLoS One; 2021; 16(6):e0253489. PubMed ID: 34138966 [TBL] [Abstract][Full Text] [Related]
42. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Wang S; Qiu Z; Hou Y; Deng X; Xu W; Zheng T; Wu P; Xie S; Bian W; Zhang C; Sun Z; Liu K; Shan C; Lin A; Jiang S; Xie Y; Zhou Q; Lu L; Huang J; Li X Cell Res; 2021 Feb; 31(2):126-140. PubMed ID: 33420426 [TBL] [Abstract][Full Text] [Related]
44. SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Zhou Y; Wang M; Li Y; Wang P; Zhao P; Yang Z; Wang S; Zhang L; Li Z; Jia K; Zhong C; Li N; Yu Y; Hou J Immunol Lett; 2021 Sep; 237():33-41. PubMed ID: 34228987 [TBL] [Abstract][Full Text] [Related]
45. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. Carpinteiro A; Gripp B; Hoffmann M; Pöhlmann S; Hoertel N; Edwards MJ; Kamler M; Kornhuber J; Becker KA; Gulbins E J Biol Chem; 2021; 296():100701. PubMed ID: 33895135 [TBL] [Abstract][Full Text] [Related]
46. SARS-CoV-2 Infection of Human Neurons Is TMPRSS2 Independent, Requires Endosomal Cell Entry, and Can Be Blocked by Inhibitors of Host Phosphoinositol-5 Kinase. Kettunen P; Lesnikova A; Räsänen N; Ojha R; Palmunen L; Laakso M; Lehtonen Š; Kuusisto J; Pietiläinen O; Saber SH; Joensuu M; Vapalahti OP; Koistinaho J; Rolova T; Balistreri G J Virol; 2023 Apr; 97(4):e0014423. PubMed ID: 37039676 [TBL] [Abstract][Full Text] [Related]
47. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Liu Y; Hu G; Wang Y; Ren W; Zhao X; Ji F; Zhu Y; Feng F; Gong M; Ju X; Zhu Y; Cai X; Lan J; Guo J; Xie M; Dong L; Zhu Z; Na J; Wu J; Lan X; Xie Y; Wang X; Yuan Z; Zhang R; Ding Q Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33658332 [TBL] [Abstract][Full Text] [Related]
48. Competitive cleavage of SARS-CoV-2 spike protein and epithelial sodium channel by plasmin as a potential mechanism for COVID-19 infection. Hou Y; Yu T; Wang T; Ding Y; Cui Y; Nie H Am J Physiol Lung Cell Mol Physiol; 2022 Nov; 323(5):L569-L577. PubMed ID: 36193902 [TBL] [Abstract][Full Text] [Related]
49. SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Panigrahi S; Goswami T; Ferrari B; Antonelli CJ; Bazdar DA; Gilmore H; Freeman ML; Lederman MM; Sieg SF Microbiol Spectr; 2021 Dec; 9(3):e0073521. PubMed ID: 34935423 [TBL] [Abstract][Full Text] [Related]
50. Human Surfactant Protein D Binds Spike Protein and Acts as an Entry Inhibitor of SARS-CoV-2 Pseudotyped Viral Particles. Hsieh MH; Beirag N; Murugaiah V; Chou YC; Kuo WS; Kao HF; Madan T; Kishore U; Wang JY Front Immunol; 2021; 12():641360. PubMed ID: 34054808 [TBL] [Abstract][Full Text] [Related]
51. Possible inhibition of GM-CSF production by SARS-CoV-2 spike-based vaccines. Li J; Wang P; Tracey KJ; Wang H Mol Med; 2021 May; 27(1):49. PubMed ID: 34022793 [TBL] [Abstract][Full Text] [Related]
52. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. Li K; Meyerholz DK; Bartlett JA; McCray PB mBio; 2021 Aug; 12(4):e0097021. PubMed ID: 34340553 [TBL] [Abstract][Full Text] [Related]
54. SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells. Miao L; Yan C; Chen Y; Zhou W; Zhou X; Qiao Q; Xu Z Cell Chem Biol; 2023 Mar; 30(3):248-260.e4. PubMed ID: 36889309 [TBL] [Abstract][Full Text] [Related]
55. Quantum Dot-Conjugated SARS-CoV-2 Spike Pseudo-Virions Enable Tracking of Angiotensin Converting Enzyme 2 Binding and Endocytosis. Gorshkov K; Susumu K; Chen J; Xu M; Pradhan M; Zhu W; Hu X; Breger JC; Wolak M; Oh E ACS Nano; 2020 Sep; 14(9):12234-12247. PubMed ID: 32845122 [TBL] [Abstract][Full Text] [Related]
56. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Kishimoto M; Uemura K; Sanaki T; Sato A; Hall WW; Kariwa H; Orba Y; Sawa H; Sasaki M Viruses; 2021 Feb; 13(3):. PubMed ID: 33671076 [TBL] [Abstract][Full Text] [Related]
57. Spike protein mediated membrane fusion during SARS-CoV-2 infection. Li X; Yuan H; Li X; Wang H J Med Virol; 2023 Jan; 95(1):e28212. PubMed ID: 36224449 [TBL] [Abstract][Full Text] [Related]
58. Differential Interactions between Human ACE2 and Spike RBD of SARS-CoV-2 Variants of Concern. Kim S; Liu Y; Lei Z; Dicker J; Cao Y; Zhang XF; Im W J Chem Theory Comput; 2021 Dec; 17(12):7972-7979. PubMed ID: 34856802 [TBL] [Abstract][Full Text] [Related]
59. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Ashraf UM; Abokor AA; Edwards JM; Waigi EW; Royfman RS; Hasan SA; Smedlund KB; Hardy AMG; Chakravarti R; Koch LG Physiol Genomics; 2021 Feb; 53(2):51-60. PubMed ID: 33275540 [TBL] [Abstract][Full Text] [Related]
60. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]