These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33961404)

  • 21. Ultrafast fluorescence resonance energy transfer in a micelle.
    Sahu K; Ghosh S; Mondal SK; Ghosh BC; Sen P; Roy D; Bhattacharyya K
    J Chem Phys; 2006 Jul; 125(4):44714. PubMed ID: 16942181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers.
    Wahlroos R; Toivonen J; Tirri M; Hänninen P
    J Fluoresc; 2006 May; 16(3):379-86. PubMed ID: 16791502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET).
    Algar WR; Krull UJ
    Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micelle nanoparticles for FRET-based ratiometric sensing of mercury ions in water, biological fluids and living cells.
    Ma B; Xu M; Zeng F; Huang L; Wu S
    Nanotechnology; 2011 Feb; 22(6):065501. PubMed ID: 21212478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast fluorescence resonance energy transfer in a reverse micelle: excitation wavelength dependence.
    Mondal SK; Ghosh S; Sahu K; Mandal U; Bhattacharyya K
    J Chem Phys; 2006 Dec; 125(22):224710. PubMed ID: 17176157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Noor MO; Shahmuradyan A; Krull UJ
    Anal Chem; 2013 Feb; 85(3):1860-7. PubMed ID: 23272728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembled pi-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET).
    Praveen VK; George SJ; Varghese R; Vijayakumar C; Ajayaghosh A
    J Am Chem Soc; 2006 Jun; 128(23):7542-50. PubMed ID: 16756309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Resolution Single-Molecule FRET via DNA eXchange (FRET X).
    Filius M; Kim SH; Severins I; Joo C
    Nano Lett; 2021 Apr; 21(7):3295-3301. PubMed ID: 33739111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of NaCl on ESPT-mediated FRET in a CTAC micelle: a femtosecond and FCS study.
    Mandal AK; Ghosh S; Das AK; Mondal T; Bhattacharyya K
    Chemphyschem; 2013 Mar; 14(4):788-96. PubMed ID: 23143825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploiting Co-solubilization of Warfarin, Curcumin, and Rhodamine B for Modulation of Energy Transfer: A Micelle FRET On/Off Switch.
    Bhat PA; Chat OA; Dar AA
    Chemphyschem; 2016 Aug; 17(15):2360-72. PubMed ID: 27123553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing.
    Tsai HY; Algar WR
    ACS Nano; 2022 May; 16(5):8150-8160. PubMed ID: 35499916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excimer-FRET Cascade in Dual DNA Probes: Open Access to Large Stokes Shift, Enhanced Acceptor Light up, and Robust RNA Sensing.
    Aparin IO; Sergeeva OV; Mishin AS; Khaydukov EV; Korshun VA; Zatsepin TS
    Anal Chem; 2020 May; 92(10):7028-7036. PubMed ID: 32314568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes.
    Junager NP; Kongsted J; Astakhova K
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27472344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-Tetraplex-Induced FRET within Telomeric Repeat Sequences Using (Py) A-(Per) A as Energy Donor-Acceptor Pair.
    Kundu R
    Chem Asian J; 2016 Jan; 11(2):198-201. PubMed ID: 26490798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Droplet Microarray Based on Nanosensing Probe Patterns for Simultaneous Detection of Multiple HIV Retroviral Nucleic Acids.
    Oudeng G; Benz M; Popova AA; Zhang Y; Yi C; Levkin PA; Yang M
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55614-55623. PubMed ID: 33269927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Noor MO; Krull UJ
    Anal Chem; 2013 Aug; 85(15):7502-11. PubMed ID: 23837820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a controllable Förster resonance energy transfer system based on G-quadruplex for DNA sensing.
    Yue Q; Shen T; Wang C; Wang L; Li H; Xu S; Wang H; Liu J
    Biosens Bioelectron; 2013 Feb; 40(1):75-81. PubMed ID: 22794935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.