These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33961433)

  • 1. Modeling Amyloid Aggregation Kinetics: A Case Study with Sup35NM.
    Sharma A; McDonald MA; Rose HB; Chernoff YO; Behrens SH; Bommarius AS
    J Phys Chem B; 2021 May; 125(19):4955-4963. PubMed ID: 33961433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and polymorphs of yeast prion Sup35NM amyloidogenesis.
    Kinoshita M; Lin Y; Nakatsuji M; Inui T; Lee YH
    Int J Biol Macromol; 2017 Sep; 102():1241-1249. PubMed ID: 28476595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of aggregation of amyloid β under different shearing conditions: Experimental and modelling analyses.
    Krishnamurthy S; Sudhakar S; Mani E
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112156. PubMed ID: 34736218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing and modulation of amyloid fibrils by photo-switchable organic dots.
    Uddin A; Roy B; Jose GP; Hossain SS; Hazra P
    Nanoscale; 2020 Aug; 12(32):16805-16818. PubMed ID: 32761038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I.
    Mizuguchi C; Nakagawa M; Namba N; Sakai M; Kurimitsu N; Suzuki A; Fujita K; Horiuchi S; Baba T; Ohgita T; Nishitsuji K; Saito H
    J Biol Chem; 2019 Sep; 294(36):13515-13524. PubMed ID: 31341020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Occurrence of Soluble Oligomers through Amyloid Aggregation Scaling Laws.
    Silva A; Sárkány Z; Fraga JS; Taboada P; Macedo-Ribeiro S; Martins PM
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30287796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Aggregate Weight-Normalized Thioflavin-T Measurement Scale for Characterizing Polymorphic Amyloids and Assembly Intermediates.
    Wetzel R; Chemuru S; Misra P; Kodali R; Mukherjee S; Kar K
    Methods Mol Biol; 2018; 1777():121-144. PubMed ID: 29744831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Synuclein aggregation at low concentrations.
    Afitska K; Fucikova A; Shvadchak VV; Yushchenko DA
    Biochim Biophys Acta Proteins Proteom; 2019; 1867(7-8):701-709. PubMed ID: 31096048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dynamics of in vitro amyloid fiber formation of yeast prion protein Sup35NM].
    Wei HY; Liu YX; Wang JW; Qu JG; Zhao WM; Yu XP; Hong T
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2006 Mar; 20(1):39-42. PubMed ID: 16642217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY.
    Burra G; Maina MB; Serpell LC; Thakur AK
    J Mol Biol; 2021 Feb; 433(3):166732. PubMed ID: 33279578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation.
    Xue C; Lin TY; Chang D; Guo Z
    R Soc Open Sci; 2017 Jan; 4(1):160696. PubMed ID: 28280572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid fibril formation kinetics of low-pH denatured bovine PI3K-SH3 monitored by three different NMR techniques.
    Gardon L; Becker N; Rähse N; Hölbling C; Apostolidis A; Schulz CM; Bochinsky K; Gremer L; Heise H; Lakomek NA
    Front Mol Biosci; 2023; 10():1254721. PubMed ID: 38046811
    [No Abstract]   [Full Text] [Related]  

  • 14. Amyloid formation of fish β-parvalbumin involves primary nucleation triggered by disulfide-bridged protein dimers.
    Werner TER; Bernson D; Esbjörner EK; Rocha S; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27997-28004. PubMed ID: 33093204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
    Blancas-Mejía LM; Misra P; Ramirez-Alvarado M
    Biochemistry; 2017 Feb; 56(5):757-766. PubMed ID: 28074646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu/Zn Superoxide Dismutase Forms Amyloid Fibrils under Near-Physiological Quiescent Conditions: The Roles of Disulfide Bonds and Effects of Denaturant.
    Khan MAI; Respondek M; Kjellström S; Deep S; Linse S; Akke M
    ACS Chem Neurosci; 2017 Sep; 8(9):2019-2026. PubMed ID: 28585802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimum amyloid fibril formation of a peptide fragment suggests the amyloidogenic preference of beta2-microglobulin under physiological conditions.
    Ohhashi Y; Hasegawa K; Naiki H; Goto Y
    J Biol Chem; 2004 Mar; 279(11):10814-21. PubMed ID: 14699107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers.
    Morinaga A; Hasegawa K; Nomura R; Ookoshi T; Ozawa D; Goto Y; Yamada M; Naiki H
    Biochim Biophys Acta; 2010 Apr; 1804(4):986-95. PubMed ID: 20100601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration dependent switch in the kinetic pathway of lysozyme fibrillation: Spectroscopic and microscopic analysis.
    Kiran Kumar E; Prasad DK; Prakash Prabhu N
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():187-194. PubMed ID: 28448956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Letter to the Editor.
    Khodarahmi R
    Int J Biol Macromol; 2018 Jul; 114():1084-1085. PubMed ID: 29627464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.