These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33961445)
1. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces. Hassan MR; Zhang J; Wang C Langmuir; 2021 May; 37(19):5823-5837. PubMed ID: 33961445 [TBL] [Abstract][Full Text] [Related]
2. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect. Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053 [TBL] [Abstract][Full Text] [Related]
3. Droplet coalescence on water repellant surfaces. Nam Y; Seo D; Lee C; Shin S Soft Matter; 2015 Jan; 11(1):154-60. PubMed ID: 25375970 [TBL] [Abstract][Full Text] [Related]
4. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics. Li H; Yang W; Aili A; Zhang T Langmuir; 2017 Aug; 33(34):8574-8581. PubMed ID: 28767250 [TBL] [Abstract][Full Text] [Related]
5. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
6. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces. Aili A; Li H; Alhosani MH; Zhang T ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890 [TBL] [Abstract][Full Text] [Related]
7. Trapping and Coalescence of Diamagnetic Aqueous Droplets Using Negative Magnetophoresis. Jain SK; Banerjee U; Sen AK Langmuir; 2020 Jun; 36(21):5960-5966. PubMed ID: 32388985 [TBL] [Abstract][Full Text] [Related]
8. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications. Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724 [TBL] [Abstract][Full Text] [Related]
9. Shape evolution and splitting of ferrofluid droplets on a hydrophobic surface in the presence of a magnetic field. Banerjee U; Sen AK Soft Matter; 2018 Apr; 14(15):2915-2922. PubMed ID: 29610807 [TBL] [Abstract][Full Text] [Related]
10. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior. Chen X; Wang P; Zhang D ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958 [TBL] [Abstract][Full Text] [Related]
11. Effect of confinement on droplet coalescence in shear flow. Chen D; Cardinaels R; Moldenaers P Langmuir; 2009 Nov; 25(22):12885-93. PubMed ID: 19795816 [TBL] [Abstract][Full Text] [Related]
12. Coalescence-Induced Droplet Jumping. Liu C; Zhao M; Zheng Y; Cheng L; Zhang J; Tee CATH Langmuir; 2021 Jan; 37(3):983-1000. PubMed ID: 33443436 [TBL] [Abstract][Full Text] [Related]
14. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation. Huang Y; Wen G; Fan Y; He M; Sun W; Tian X; Huang S ACS Nano; 2024 Feb; 18(8):6359-6372. PubMed ID: 38363638 [TBL] [Abstract][Full Text] [Related]
15. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting. Hong J; Lee SJ Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988 [TBL] [Abstract][Full Text] [Related]
16. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove. Lu D; Zhao M; Zhang H; Yang Y; Zheng Y Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257 [TBL] [Abstract][Full Text] [Related]
17. "Particle-Free" Magnetic Actuation of Droplets on Superhydrophobic Surfaces Using Dissolved Paramagnetic Salts. Mats L; Logue F; Oleschuk RD Anal Chem; 2016 Oct; 88(19):9486-9494. PubMed ID: 27605120 [TBL] [Abstract][Full Text] [Related]
18. Electric manipulation on deformation of ionic ferrofluid sessile droplets. Zhu GP; Li XA; Wang QY; Fang MH; Ding YC Electrophoresis; 2024 Jul; 45(13-14):1243-1251. PubMed ID: 38308502 [TBL] [Abstract][Full Text] [Related]
19. Coalescence Processes of Droplets and Liquid Marbles. Jin J; Ooi CH; Dao DV; Nguyen NT Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400525 [TBL] [Abstract][Full Text] [Related]
20. Enhancement and Predictable Guidance of Coalescence-Induced Droplet Jumping on V-Shaped Superhydrophobic Surfaces with a Ridge. Tang S; Li Q; Li W; Chen S Langmuir; 2024 Aug; ():. PubMed ID: 39133052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]