These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33961625)
1. Darcy-Forchheimer hybrid nanofluid flow over a stretching curved surface with heat and mass transfer. Saeed A; Alghamdi W; Mukhtar S; Shah SIA; Kumam P; Gul T; Nasir S; Kumam W PLoS One; 2021; 16(5):e0249434. PubMed ID: 33961625 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer porous medium. Hayat T; Haider F; Muhammad T; Alsaedi A PLoS One; 2017; 12(7):e0179576. PubMed ID: 28686643 [TBL] [Abstract][Full Text] [Related]
3. Entropy optimized dissipative CNTs based flow with probable error and statistical declaration. Ijaz Khan M; Ali A; Hayat T; Alsaedi A Comput Methods Programs Biomed; 2020 Mar; 185():105137. PubMed ID: 31671339 [TBL] [Abstract][Full Text] [Related]
4. Numerical analysis of radiative hybrid nanomaterials flow across a permeable curved surface with inertial and Joule heating characteristics. Hayat AU; Ullah I; Khan H; Alam MM; Hassan AM; Khan H Heliyon; 2023 Nov; 9(11):e21452. PubMed ID: 38027741 [TBL] [Abstract][Full Text] [Related]
5. Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions. Ramzan M; Dawar A; Saeed A; Kumam P; Watthayu W; Kumam W PLoS One; 2021; 16(12):e0260854. PubMed ID: 34905556 [TBL] [Abstract][Full Text] [Related]
7. Thermal Behavior of the Time-Dependent Radiative Flow of Water-Based CNTs/Au Nanoparticles Past a Riga Plate with Entropy Optimization and Multiple Slip Conditions. Rajupillai K; Alessa N; Eswaramoorthi S; Loganathan K Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673217 [TBL] [Abstract][Full Text] [Related]
8. Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity. Abbas SZ; Khan WA; Kadry S; Khan MI; Waqas M; Khan MI Comput Methods Programs Biomed; 2020 Jul; 190():105363. PubMed ID: 32062091 [TBL] [Abstract][Full Text] [Related]
9. Boundary layer flow past a stretching surface in a porous medium saturated by a nanofluid: Brinkman-Forchheimer model. Khan WA; Pop IM PLoS One; 2012; 7(10):e47031. PubMed ID: 23077541 [TBL] [Abstract][Full Text] [Related]
10. Analytical investigation of magnetized 2D hybrid nanofluid (GO + ZnO + blood) flow through a perforated capillary. Ullah I; Ullah A; Selim MM; Khan MI; Saima ; Khan AA; Malik MY Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1531-1543. PubMed ID: 34986079 [TBL] [Abstract][Full Text] [Related]
11. Radiative flow of cross ternary hybrid nanofluid ( Ali F; Zaib A; Abbas M; Anitha G; Loganathan K; Reddy GR Heliyon; 2024 Jul; 10(14):e34048. PubMed ID: 39108888 [TBL] [Abstract][Full Text] [Related]
12. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Khan MS; Mei S; Shabnam ; Ali Shah N; Chung JD; Khan A; Shah SA Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214989 [TBL] [Abstract][Full Text] [Related]
13. Impact of thermal radiation and internal heat generation on Casson nano-fluid flowing by a curved stretchable surface with suspension of carbon nanotubes (CNTs). Abideen ZU; Saif RS Heliyon; 2023 Aug; 9(8):e18941. PubMed ID: 37649845 [TBL] [Abstract][Full Text] [Related]
15. Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface. Ramzan M; Shah Z; Kumam P; Khan W; Watthayu W; Kumam W PLoS One; 2022; 17(4):e0264208. PubMed ID: 35421096 [TBL] [Abstract][Full Text] [Related]
16. Impact of induced magnetic field on Darcy-Forchheimer nanofluid flows comprising carbon nanotubes with homogeneous-heterogeneous reactions. Bashir S; Almanjahie IM; Ramzan M; Cheema AN; Akhtar M; Alshahrani F Heliyon; 2024 Feb; 10(3):e24718. PubMed ID: 38317883 [TBL] [Abstract][Full Text] [Related]
17. Cu and Cu-SWCNT Nanoparticles' Suspension in Pulsatile Casson Fluid Flow via Darcy-Forchheimer Porous Channel with Compliant Walls: A Prospective Model for Blood Flow in Stenosed Arteries. Ali A; Bukhari Z; Umar M; Ismail MA; Abbas Z Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34204328 [TBL] [Abstract][Full Text] [Related]
18. Optimal Homotopic Exploration of Features of Cattaneo-Christov Model in Second Grade Nanofluid Flow via Darcy-Forchheimer Medium Subject to Viscous Dissipation and Thermal Radiation. Rasool G; Shafiq A; Chu YM; Bhutta MS; Ali A Comb Chem High Throughput Screen; 2022; 25(14):2485-2497. PubMed ID: 34477515 [TBL] [Abstract][Full Text] [Related]
19. Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface. Rehman A; Saeed A; Salleh Z; Jan R; Kumam P Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407226 [TBL] [Abstract][Full Text] [Related]
20. Hybrid nanofluid flow through a spinning Darcy-Forchheimer porous space with thermal radiation. Saeed A; Jawad M; Alghamdi W; Nasir S; Gul T; Kumam P Sci Rep; 2021 Aug; 11(1):16708. PubMed ID: 34408217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]