These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 33961725)

  • 1. Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.
    Joo S; Kim K; Kwon O; Oh J; Kim HJ; Zhang L; Zhou J; Wang JQ; Jeong HY; Han JW; Kim G
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15912-15919. PubMed ID: 33961725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane.
    Najimu M; Jo S; Gilliard-AbdulAziz KL
    Acc Chem Res; 2023 Nov; 56(22):3132-3141. PubMed ID: 37939260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System.
    Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exsolution of Ni Nanoparticles from A-Site-Deficient Layered Double Perovskites for Dry Reforming of Methane and as an Anode Material for a Solid Oxide Fuel Cell.
    Managutti PB; Tymen S; Liu X; Hernandez O; Prestipino C; Le Gal La Salle A; Paul S; Jalowiecki-Duhamel L; Dorcet V; Billard A; Briois P; Bahout M
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35719-35728. PubMed ID: 34288641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Control of the Eluted Ni Nanoparticles from Highly Doped Perovskite for Effective Methane Dry Reforming.
    Kim H; Mane R; Han K; Kim H; Lee C; Jeon Y
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exsolution of Co-Fe Alloy Nanoparticles on the PrBaFeCoO
    Managutti PB; Yu H; Hernandez O; Prestipino C; Dorcet V; Wang H; Hansen TC; Bahout M
    ACS Appl Mater Interfaces; 2023 May; 15(19):23040-23050. PubMed ID: 37040557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition.
    Joo S; Seong A; Kwon O; Kim K; Lee JH; Gorte RJ; Vohs JM; Han JW; Kim G
    Sci Adv; 2020 Aug; 6(35):eabb1573. PubMed ID: 32923635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field.
    Motomura A; Nakaya Y; Sampson C; Higo T; Torimoto M; Tsuneki H; Furukawa S; Sekine Y
    RSC Adv; 2022 Oct; 12(44):28359-28363. PubMed ID: 36320534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Exsolved Metal-Oxide Interfaces in Porous Single-Crystalline Ceria Monoliths for Efficient and Durable CH
    Xiao Y; Xie K
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202113079. PubMed ID: 34676642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al
    Zhang S; Tang L; Yu J; Zhan W; Wang L; Guo Y; Guo Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58605-58618. PubMed ID: 34866393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts.
    Kim SM; Abdala PM; Margossian T; Hosseini D; Foppa L; Armutlulu A; van Beek W; Comas-Vives A; Copéret C; Müller C
    J Am Chem Soc; 2017 Feb; 139(5):1937-1949. PubMed ID: 28068106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation-swapped homogeneous nanoparticles in perovskite oxides for high power density.
    Joo S; Kwon O; Kim K; Kim S; Kim H; Shin J; Jeong HY; Sengodan S; Han JW; Kim G
    Nat Commun; 2019 Feb; 10(1):697. PubMed ID: 30741942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steering the Methane Dry Reforming Reactivity of Ni/La
    Bekheet MF; Delir Kheyrollahi Nezhad P; Bonmassar N; Schlicker L; Gili A; Praetz S; Gurlo A; Doran A; Gao Y; Heggen M; Niaei A; Farzi A; Schwarz S; Bernardi J; Klötzer B; Penner S
    ACS Catal; 2021 Jan; 11(1):43-59. PubMed ID: 33425477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni
    Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.
    Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR
    Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane.
    Li L; Chen J; Zhang Y; Sun J; Zou G
    Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts.
    Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Exsolution of Ni-Ru Bimetallic Nanoparticles from A-Site Deficient Double Perovskites.
    Guo J; Cai R; Cali E; Wilson GE; Kerherve G; Haigh SJ; Skinner SJ
    Small; 2022 Oct; 18(43):e2107020. PubMed ID: 35182013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.