These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33961879)
1. Effect of wheat gluten on improved thermal cross-linking and osteogenesis of hydroxyapatite-gelatin composite scaffolds. Sri Ramakrishnan L; Ps U; Sabu CK; Krishnan AG; Nair MB Int J Biol Macromol; 2021 Jul; 183():1200-1209. PubMed ID: 33961879 [TBL] [Abstract][Full Text] [Related]
2. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466 [TBL] [Abstract][Full Text] [Related]
3. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
4. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration. Li X; Zhang R; Tan X; Li B; Liu Y; Wang X Int J Med Sci; 2019; 16(7):1007-1017. PubMed ID: 31341414 [TBL] [Abstract][Full Text] [Related]
6. Osteoinductivity of nanostructured hydroxyapatite-functionalized gelatin modulated by human and endogenous mesenchymal stromal cells. Della Bella E; Parrilli A; Bigi A; Panzavolta S; Amadori S; Giavaresi G; Martini L; Borsari V; Fini M J Biomed Mater Res A; 2018 Apr; 106(4):914-923. PubMed ID: 29143449 [TBL] [Abstract][Full Text] [Related]
7. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. Shamaz BH; Anitha A; Vijayamohan M; Kuttappan S; Nair S; Nair MB Nanotechnology; 2015 Oct; 26(40):405101. PubMed ID: 26373968 [TBL] [Abstract][Full Text] [Related]
8. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
9. Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat. Tavakol S; Azami M; Khoshzaban A; Ragerdi Kashani I; Tavakol B; Hoveizi E; Rezayat Sorkhabadi SM Cell Biol Int; 2013 Nov; 37(11):1181-9. PubMed ID: 23765607 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Thomas A; Bera J J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229 [TBL] [Abstract][Full Text] [Related]
11. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
12. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
13. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Mou P; Peng H; Zhou L; Li L; Li H; Huang Q Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401 [No Abstract] [Full Text] [Related]
14. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
15. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes. Ji J; Tong X; Huang X; Zhang J; Qin H; Hu Q Stem Cells Transl Med; 2016 Jan; 5(1):95-105. PubMed ID: 26586776 [TBL] [Abstract][Full Text] [Related]
16. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis. Shankar KG; Gostynska N; Montesi M; Panseri S; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M Int J Biol Macromol; 2017 Feb; 95():1199-1209. PubMed ID: 27836656 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr Cui W; Yang L; Ullah I; Yu K; Zhao Z; Gao X; Liu T; Liu M; Li P; Wang J; Guo X Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35026740 [TBL] [Abstract][Full Text] [Related]
18. Macroporous scaffolds developed from CaSiO Du Z; Zhao Z; Liu H; Liu X; Zhang X; Huang Y; Leng H; Cai Q; Yang X Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111005. PubMed ID: 32487409 [TBL] [Abstract][Full Text] [Related]
19. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. Sellgren KL; Ma T J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991 [TBL] [Abstract][Full Text] [Related]
20. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Guillaume O; Geven MA; Sprecher CM; Stadelmann VA; Grijpma DW; Tang TT; Qin L; Lai Y; Alini M; de Bruijn JD; Yuan H; Richards RG; Eglin D Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]