These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33962045)

  • 1. Assessment of hepatic fatty acids during non-alcoholic steatohepatitis progression using magnetic resonance spectroscopy.
    Xavier A; Zacconi F; Santana-Romo F; Eykyn TR; Lavin B; Phinikaridou A; Botnar R; Uribe S; Oyarzún JE; Cabrera D; Arrese M; Andia ME
    Ann Hepatol; 2021; 25():100358. PubMed ID: 33962045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis.
    Traussnigg S; Kienbacher C; Gajdošík M; Valkovič L; Halilbasic E; Stift J; Rechling C; Hofer H; Steindl-Munda P; Ferenci P; Wrba F; Trattnig S; Krššák M; Trauner M
    Liver Int; 2017 Oct; 37(10):1544-1553. PubMed ID: 28544208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of murine steatohepatitis models identifies a dietary intervention with robust fibrosis, ductular reaction, and rapid progression to cirrhosis and cancer.
    Wei G; An P; Vaid KA; Nasser I; Huang P; Tan L; Zhao S; Schuppan D; Popov YV
    Am J Physiol Gastrointest Liver Physiol; 2020 Jan; 318(1):G174-G188. PubMed ID: 31630534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of hepatic fatty acids using magnetic resonance spectroscopy for the assessment of treatment response to metformin in an eNOS
    Lavin B; Eykyn TR; Phinikaridou A; Xavier A; Kumar S; Buqué X; Aspichueta P; Sing-Long C; Arrese M; Botnar RM; Andia ME
    NMR Biomed; 2023 Aug; 36(8):e4932. PubMed ID: 36940044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of the Hepatoprotective Effects of Ileal Apical Sodium Dependent Bile Acid Transporter (ASBT) Inhibition in Choline-Deficient L-Amino Acid-Defined (CDAA) Diet-Fed Mice.
    Rao A; van de Peppel IP; Gumber S; Karpen SJ; Dawson PA
    Front Med (Lausanne); 2020; 7():60. PubMed ID: 32158763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of water-fat MRI and proton MRS in assessment of hepatic fat and the heterogeneous distribution of hepatic fat and iron in subjects with non-alcoholic fatty liver disease.
    Hui SCN; So HK; Chan DFY; Wong SKH; Yeung DKW; Ng EKW; Chu WCW
    Eur J Radiol; 2018 Oct; 107():7-13. PubMed ID: 30292275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid-specific blockade of Notch signaling ameliorates nonalcoholic fatty liver disease in mice.
    Ding J; Xu M; Du W; Fang ZQ; Xu H; Liu JJ; Song P; Xu C; Li ZW; Yue ZS; Ling YW; Duan JL; Tao KS; He F; Wang L
    Int J Biol Sci; 2023; 19(6):1941-1954. PubMed ID: 37063432
    [No Abstract]   [Full Text] [Related]  

  • 8. Liver fat deposition and mitochondrial dysfunction in morbid obesity: An approach combining metabolomics with liver imaging and histology.
    Calvo N; Beltrán-Debón R; Rodríguez-Gallego E; Hernández-Aguilera A; Guirro M; Mariné-Casadó R; Millá L; Alegret JM; Sabench F; del Castillo D; Vinaixa M; Rodríguez MÀ; Correig X; García-Álvarez R; Menendez JA; Camps J; Joven J
    World J Gastroenterol; 2015 Jun; 21(24):7529-44. PubMed ID: 26140000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NLRP3 inflammasome activation is required for fibrosis development in NAFLD.
    Wree A; McGeough MD; Peña CA; Schlattjan M; Li H; Inzaugarat ME; Messer K; Canbay A; Hoffman HM; Feldstein AE
    J Mol Med (Berl); 2014 Oct; 92(10):1069-82. PubMed ID: 24861026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic Alanine Differentiates Nonalcoholic Steatohepatitis From Simple Steatosis in Humans and Mice: A Proton MR Spectroscopy Study With Long Echo Time.
    Kim TH; Jun HY; Kim KJ; Lee YH; Lee MS; Choi KH; Yun KJ; Jeong YY; Jun CH; Cho EY; Yoon KH
    J Magn Reson Imaging; 2017 Nov; 46(5):1298-1310. PubMed ID: 28225569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A trans fatty acid substitute enhanced development of liver proliferative lesions induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet.
    Suzuki-Kemuriyama N; Abe A; Uno K; Ogawa S; Watanabe A; Sano R; Yuki M; Miyajima K; Nakae D
    Lipids Health Dis; 2020 Dec; 19(1):251. PubMed ID: 33317575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous Administration of Low-Dose Lipopolysaccharide Potentiates Liver Fibrosis in a Choline-Deficient l-Amino-Acid-Defined Diet-Induced Murine Steatohepatitis Model.
    Nakanishi K; Kaji K; Kitade M; Kubo T; Furukawa M; Saikawa S; Shimozato N; Sato S; Seki K; Kawaratani H; Moriya K; Namisaki T; Yoshiji H
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice.
    Ganz M; Bukong TN; Csak T; Saha B; Park JK; Ambade A; Kodys K; Szabo G
    J Transl Med; 2015 Jun; 13():193. PubMed ID: 26077675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of hyaluronan synthesis by 4-methylumbelliferone ameliorates non-alcoholic steatohepatitis in choline-deficient L-amino acid-defined diet-induced murine model.
    Yang YM; Wang Z; Matsuda M; Seki E
    Arch Pharm Res; 2021 Feb; 44(2):230-240. PubMed ID: 33486695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD44 is a key player in non-alcoholic steatohepatitis.
    Patouraux S; Rousseau D; Bonnafous S; Lebeaupin C; Luci C; Canivet CM; Schneck AS; Bertola A; Saint-Paul MC; Iannelli A; Gugenheim J; Anty R; Tran A; Bailly-Maitre B; Gual P
    J Hepatol; 2017 Aug; 67(2):328-338. PubMed ID: 28323124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomic profiling of the hepatic esterified fatty acid composition in diet-induced nonalcoholic fatty liver disease in genetically diverse Collaborative Cross mice.
    Nagumalli SK; Willett RA; de Conti A; Tryndyak VP; Avigan MI; da Costa GG; Beland FA; Rusyn I; Pogribny IP
    J Nutr Biochem; 2022 Nov; 109():109108. PubMed ID: 35858665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease.
    Afonso MB; Rodrigues PM; Mateus-Pinheiro M; Simão AL; Gaspar MM; Majdi A; Arretxe E; Alonso C; Santos-Laso A; Jimenez-Agüero R; Eizaguirre E; Bujanda L; Pareja MJ; Banales JM; Ratziu V; Gautheron J; Castro RE; Rodrigues CMP
    Gut; 2021 Dec; 70(12):2359-2372. PubMed ID: 33361348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term profile of serological biomarkers, hepatic inflammation, and fibrosis in a mouse model of non-alcoholic fatty liver disease.
    Toita R; Kang JH
    Toxicol Lett; 2020 Oct; 332():1-6. PubMed ID: 32579995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models.
    Ishioka M; Miura K; Minami S; Shimura Y; Ohnishi H
    Dig Dis Sci; 2017 Feb; 62(2):396-406. PubMed ID: 27913996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet.
    Ikawa-Yoshida A; Matsuo S; Kato A; Ohmori Y; Higashida A; Kaneko E; Matsumoto M
    Int J Exp Pathol; 2017 Aug; 98(4):221-233. PubMed ID: 28895242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.