BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33962070)

  • 1. Application of textile technology in tissue engineering: A review.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    Acta Biomater; 2021 Jul; 128():60-76. PubMed ID: 33962070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    J Mech Behav Biomed Mater; 2021 Jul; 119():104499. PubMed ID: 33857876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
    Akbari M; Tamayol A; Bagherifard S; Serex L; Mostafalu P; Faramarzi N; Mohammadi MH; Khademhosseini A
    Adv Healthc Mater; 2016 Apr; 5(7):751-66. PubMed ID: 26924450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and application of textile-based tissue engineering scaffolds: a review.
    Jiao Y; Li C; Liu L; Wang F; Liu X; Mao J; Wang L
    Biomater Sci; 2020 Jul; 8(13):3574-3600. PubMed ID: 32555780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing, characterization, and degradation of a poly(lactic acid) warp-knitted spacer fabric scaffold as a candidate for tissue engineering applications.
    Caronna F; Glimpel N; Paar GP; Gries T; Blaeser A; Do K; Dolan EB; Ronan W
    Biomater Sci; 2022 Jul; 10(14):3793-3807. PubMed ID: 35642617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties.
    Tonndorf R; Aibibu D; Cherif C
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.
    Wu S; Duan B; Liu P; Zhang C; Qin X; Butcher JT
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16950-60. PubMed ID: 27304080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
    Şenel Ayaz HG; Perets A; Ayaz H; Gilroy KD; Govindaraj M; Brookstein D; Lelkes PI
    Biomaterials; 2014 Oct; 35(30):8540-52. PubMed ID: 25017096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Textile-templated electrospun anisotropic scaffolds for tissue engineering and regenerative medicine.
    Senel-Ayaz HG; Perets A; Govindaraj M; Brookstein D; Lelkes PI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():255-8. PubMed ID: 21096749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.
    Gossla E; Tonndorf R; Bernhardt A; Kirsten M; Hund RD; Aibibu D; Cherif C; Gelinsky M
    Acta Biomater; 2016 Oct; 44():267-76. PubMed ID: 27544815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review.
    Garg A; Alfatease A; Hani U; Haider N; Akbar MJ; Talath S; Angolkar M; Paramshetti S; Osmani RAM; Gundawar R
    Int J Biol Macromol; 2024 May; 268(Pt 1):131605. PubMed ID: 38641284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery.
    Rostamitabar M; Abdelgawad AM; Jockenhoevel S; Ghazanfari S
    Macromol Biosci; 2021 Jul; 21(7):e2100021. PubMed ID: 33951278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Structured Ridged Micro-Filaments (≥100 µm Diameter) Produced Using a Single Step Strategy for Improved Bone Cell Adhesion and Proliferation in Textile Scaffolds.
    Behary N; Eap S; Cayla A; Chai F; Benkirane-Jessel N; Campagne C
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications.
    Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS
    Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.
    Shao W; He J; Han Q; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():599-610. PubMed ID: 27287159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Fiber Optic Technology Based on Smart Textile: A Review.
    Gong Z; Xiang Z; OuYang X; Zhang J; Lau N; Zhou J; Chan CC
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
    Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.