These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33962155)
1. Detailed nature of tire pyrolysis oil blended with light cycle oil and its hydroprocessed products using a NiW/HY catalyst. Palos R; Kekäläinen T; Duodu F; Gutiérrez A; Arandes JM; Jänis J; Castaño P Waste Manag; 2021 Jun; 128():36-44. PubMed ID: 33962155 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization and transformation of nitrogen compounds in waste tire pyrolysis oils. Zhang Y; Li S; Zhang Q; Zhao Y; Liu M; Zhang D; Cai X; Wang N; Wang W J Chromatogr A; 2023 Aug; 1702():464093. PubMed ID: 37257369 [TBL] [Abstract][Full Text] [Related]
3. Identification of suitable catalyst among HZSM-5, HY and γ-Al Shanmuganathan R; Nguyen ND; Al-Ansari MM; Sathiyamoorthi E; Lee J; Priya SD Environ Res; 2024 Nov; 260():119587. PubMed ID: 38992755 [TBL] [Abstract][Full Text] [Related]
4. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends. Rajamohan S; Kasimani R Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857 [TBL] [Abstract][Full Text] [Related]
5. Scrap tires pyrolysis oil as a co-feeding stream on the catalytic cracking of vacuum gasoil under fluid catalytic cracking conditions. Rodríguez E; Palos R; Gutiérrez A; Arandes JM; Bilbao J Waste Manag; 2020 Mar; 105():18-26. PubMed ID: 32014796 [TBL] [Abstract][Full Text] [Related]
6. Pyrolysis of scrap tyres with zeolite USY. Shen B; Wu C; Wang R; Guo B; Liang C J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900 [TBL] [Abstract][Full Text] [Related]
7. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review. Mello M; Rutto H; Seodigeng T J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581 [TBL] [Abstract][Full Text] [Related]
8. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel. Mangesh VL; Padmanabhan S; Tamizhdurai P; Narayanan S; Ramesh A J Hazard Mater; 2020 Mar; 386():121453. PubMed ID: 31928791 [TBL] [Abstract][Full Text] [Related]
9. Catalytic flash pyrolysis for recovery of gasoline-range hydrocarbons from electric cable residue using a low-cost natural catalyst: An analytical Py-GC/MS study. Lopes VFD; Alves JLF; da Silva ER; Marques JAO; Melo DMA; Melo MAF; Braga RM Waste Manag; 2024 Sep; 186():188-197. PubMed ID: 38909442 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Insight into Heteroatom Removal from Vacuum Gas Oil Blended with PMMA or PET Waste. Zambrano N; Trueba D; Hita I; Palos R; Azkoiti J; Gutiérrez A; Castaño P ChemSusChem; 2024 Aug; 17(15):e202400581. PubMed ID: 38747418 [TBL] [Abstract][Full Text] [Related]
11. A Comparative Study of Pyrolysis Liquids by Slow Pyrolysis of Industrial Hemp Leaves, Hurds and Roots. Salami A; Heikkinen J; Tomppo L; Hyttinen M; Kekäläinen T; Jänis J; Vepsäläinen J; Lappalainen R Molecules; 2021 May; 26(11):. PubMed ID: 34070676 [TBL] [Abstract][Full Text] [Related]
12. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char. Pan Y; Sima J; Wang X; Zhou Y; Huang Q Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041 [TBL] [Abstract][Full Text] [Related]
13. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends. Paramasivam B; Kasimani R; Rajamohan S Environ Sci Pollut Res Int; 2018 Nov; 25(33):33806-33819. PubMed ID: 30280334 [TBL] [Abstract][Full Text] [Related]
14. A novel method for the quantification of tire and polymer-modified bitumen particles in environmental samples by pyrolysis gas chromatography mass spectroscopy. Rødland ES; Samanipour S; Rauert C; Okoffo ED; Reid MJ; Heier LS; Lind OC; Thomas KV; Meland S J Hazard Mater; 2022 Feb; 423(Pt A):127092. PubMed ID: 34488093 [TBL] [Abstract][Full Text] [Related]
15. Pyrolysis of waste tires: A modeling and parameter estimation study using Aspen Plus Ismail HY; Abbas A; Azizi F; Zeaiter J Waste Manag; 2017 Feb; 60():482-493. PubMed ID: 28341422 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of the pyrolysis and hydrolysis conversion of tire. Wang L; Wang X; Yu J J Hazard Mater; 2024 Apr; 468():133724. PubMed ID: 38382336 [TBL] [Abstract][Full Text] [Related]
17. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Yazdani E; Hashemabadi SH; Taghizadeh A Waste Manag; 2019 Feb; 85():195-201. PubMed ID: 30803573 [TBL] [Abstract][Full Text] [Related]
18. Catalytic upgrading of oil fractions separated from food waste leachate. Heo HS; Kim SG; Jeong KE; Jeon JK; Park SH; Kim JM; Kim SS; Park YK Bioresour Technol; 2011 Feb; 102(4):3952-7. PubMed ID: 21177101 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of composition and structure of sulfur compounds in residual oils by pyrolysis-gas chromatography]. Yan X; Shi Q; Xu C; Zhao S; Ke M Se Pu; 2004 Mar; 22(2):162-5. PubMed ID: 15712878 [TBL] [Abstract][Full Text] [Related]
20. Comparing different methods for olefin quantification in pygas and plastic pyrolysis oils: Gas chromatography-vacuum ultraviolet detection versus comprehensive gas chromatography versus bromine number titration. Dunkle MN; Benedetti C; Pijcke P; van Belzen R; Boekwa M; Mitsios M; Ruitenbeek M; Bellos G J Chromatogr A; 2024 Jan; 1713():464569. PubMed ID: 38091845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]