These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33962169)

  • 1. OriC-ENS: A sequence-based ensemble classifier for predicting origin of replication in S. cerevisiae.
    Azim SM; Haque MR; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107502. PubMed ID: 33962169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using extreme gradient boosting to identify origin of replication in Saccharomyces cerevisiae via hybrid features.
    Do DT; Le NQK
    Genomics; 2020 May; 112(3):2445-2451. PubMed ID: 31987913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Schizosaccharomyces pombe rfc3+ gene encodes a homologue of the human hRFC36 and Saccharomyces cerevisiae Rfc3 subunits of replication factor C.
    Gray FC; MacNeill SA
    Curr Genet; 2000 Mar; 37(3):159-67. PubMed ID: 10794172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating LASSO Feature Selection and Soft Voting Classifier to Identify Origins of Replication Sites.
    Yao Y; Zhang S; Xue T
    Curr Genomics; 2022 Jun; 23(2):83-93. PubMed ID: 36778978
    [No Abstract]   [Full Text] [Related]  

  • 5. OriDB: a DNA replication origin database.
    Nieduszynski CA; Hiraga S; Ak P; Benham CJ; Donaldson AD
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D40-6. PubMed ID: 17065467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OriDB, the DNA replication origin database updated and extended.
    Siow CC; Nieduszynska SR; Müller CA; Nieduszynski CA
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D682-6. PubMed ID: 22121216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning framework combined with word embedding to identify DNA replication origins.
    Wu F; Yang R; Zhang C; Zhang L
    Sci Rep; 2021 Jan; 11(1):844. PubMed ID: 33436981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The essential schizosaccharomyces pombe cdc23 DNA replication gene shares structural and functional homology with the Saccharomyces cerevisiae DNA43 (MCM10) gene.
    Aves SJ; Tongue N; Foster AJ; Hart EA
    Curr Genet; 1998 Sep; 34(3):164-71. PubMed ID: 9745018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motifs in Schizosaccharomyces pombe ars3002 important for replication origin activity in Saccharomyces cerevisiae.
    Antunes DF; Kim SM; Huberman JA; de Morais MA
    Plasmid; 2003 Sep; 50(2):113-9. PubMed ID: 12932737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SubFeat: Feature subspacing ensemble classifier for function prediction of DNA, RNA and protein sequences.
    Haque HMF; Rafsanjani M; Arifin F; Adilina S; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107489. PubMed ID: 33932779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ORI-Deep: improving the accuracy for predicting origin of replication sites by using a blend of features and long short-term memory network.
    Shahid M; Ilyas M; Hussain W; Khan YD
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35048955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: Multi-view ensemble learning (MEL) approach.
    Singh VK; Kumar V; Krishnamachari A
    Biosystems; 2018 Jan; 163():59-69. PubMed ID: 29233729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iORI-ENST: identifying origin of replication sites based on elastic net and stacking learning.
    Yao Y; Zhang S; Liang Y
    SAR QSAR Environ Res; 2021 Apr; 32(4):317-331. PubMed ID: 33730950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique.
    Dao FY; Lv H; Wang F; Feng CQ; Ding H; Chen W; Lin H
    Bioinformatics; 2019 Jun; 35(12):2075-2083. PubMed ID: 30428009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. sefOri: selecting the best-engineered sequence features to predict DNA replication origins.
    Lou C; Zhao J; Shi R; Wang Q; Zhou W; Wang Y; Wang G; Huang L; Feng X; Zhou F
    Bioinformatics; 2020 Jan; 36(1):49-55. PubMed ID: 31218360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components.
    Al Maruf MA; Shatabda S
    Genomics; 2019 Jul; 111(4):966-972. PubMed ID: 29935224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombination spot identification Based on gapped k-mers.
    Wang R; Xu Y; Liu B
    Sci Rep; 2016 Mar; 6():23934. PubMed ID: 27030570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes.
    Tran HT; Degtyareva NP; Koloteva NN; Sugino A; Masumoto H; Gordenin DA; Resnick MA
    Mol Cell Biol; 1995 Oct; 15(10):5607-17. PubMed ID: 7565712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of nucleosome occupancy in Saccharomyces cerevisiae using position-correlation scoring function.
    Xing Y; Zhao X; Cai L
    Genomics; 2011 Nov; 98(5):359-66. PubMed ID: 21839161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.