These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33962239)

  • 1. Assimilable organic carbon cycling within drinking water distribution systems.
    Pick FC; Fish KE; Boxall JB
    Water Res; 2021 Jun; 198():117147. PubMed ID: 33962239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system.
    Liu W; Wu H; Wang Z; Ong SL; Hu JY; Ng WJ
    Water Res; 2002 Feb; 36(4):891-8. PubMed ID: 11848359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary Colonizing
    van der Kooij D; Veenendaal HR; Italiaander R; van der Mark EJ; Dignum M
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of enhanced assimilable organic carbon method across operational drinking water systems.
    Pick FC; Fish KE; Biggs CA; Moses JP; Moore G; Boxall JB
    PLoS One; 2019; 14(12):e0225477. PubMed ID: 31809502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study.
    Chien CC; Kao CM; Chen CW; Dong CD; Chien HY
    Environ Monit Assess; 2009 Jun; 153(1-4):127-38. PubMed ID: 18483769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for biofilm development in drinking water distribution systems.
    van der Kooij D
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():39S-44S. PubMed ID: 21182691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system.
    Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J
    Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods.
    Zhang J; Li WY; Wang F; Qian L; Xu C; Liu Y; Qi W
    Chemosphere; 2016 Oct; 161():43-52. PubMed ID: 27421100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assimilable organic carbon (AOC) variation in reclaimed water: Insight on biological stability evaluation and control for sustainable water reuse.
    Chen Z; Yu T; Ngo HH; Lu Y; Li G; Wu Q; Li K; Bai Y; Liu S; Hu HY
    Bioresour Technol; 2018 Apr; 254():290-299. PubMed ID: 29398290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to assess the influence of migration from polymeric materials on the biostability of drinking water.
    Bucheli-Witschel M; Kötzsch S; Darr S; Widler R; Egli T
    Water Res; 2012 Sep; 46(13):4246-60. PubMed ID: 22682266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.
    Inkinen J; Kaunisto T; Pursiainen A; Miettinen IT; Kusnetsov J; Riihinen K; Keinänen-Toivola MM
    Water Res; 2014 Feb; 49():83-91. PubMed ID: 24317021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of assimilable organic carbon (AOC) in flemish drinking water.
    Polanska M; Huysman K; van Keer C
    Water Res; 2005 Jun; 39(11):2259-66. PubMed ID: 15925396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination.
    Wu X; Nan J; Shen J; Kang J; Li D; Yan P; Wang W; Wang B; Zhao S; Chen Z
    J Hazard Mater; 2022 Apr; 428():128264. PubMed ID: 35051770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants.
    Lou JC; Lin CY; Han JY; Tseng WB; Hsu KL; Chang TW
    Environ Monit Assess; 2012 Jun; 184(6):3491-501. PubMed ID: 21713462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological stability in drinking water: a regression analysis of influencing factors.
    Lu W; Zhang XJ
    J Environ Sci (China); 2005; 17(3):395-8. PubMed ID: 16083110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential.
    Waegenaar F; García-Timermans C; Van Landuyt J; De Gusseme B; Boon N
    Appl Environ Microbiol; 2024 May; 90(5):e0004224. PubMed ID: 38647288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.
    van der Kooij D; Martijn B; Schaap PG; Hoogenboezem W; Veenendaal HR; van der Wielen PW
    Water Res; 2015 Dec; 87():347-55. PubMed ID: 26451977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting bacterial growth in drinking water distribution system.
    Lu W; Zhang XJ
    Biomed Environ Sci; 2005 Apr; 18(2):137-40. PubMed ID: 16001834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent Water Supply Impacts on Distribution System Biofilms and Water Quality.
    Calero Preciado C; Husband S; Boxall J; Del Olmo G; Soria-Carrasco V; Maeng SK; Douterelo I
    Water Res; 2021 Aug; 201():117372. PubMed ID: 34198200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of phosphate dosing on the microbial ecology of drinking water distribution systems: Fieldwork studies in chlorinated networks.
    Douterelo I; Dutilh BE; Calero C; Rosales E; Martin K; Husband S
    Water Res; 2020 Dec; 187():116416. PubMed ID: 33039899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.