These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 33962239)
41. Investigation of microbially available phosphorus (MAP) in flemish drinking water. Polanska M; Huysman K; Van Keer C Water Res; 2005 Jun; 39(11):2267-72. PubMed ID: 15936053 [TBL] [Abstract][Full Text] [Related]
42. Phosphorus limitation on bacterial regrowth in drinking water. Sang JQ; Zhang XH; Yu GZ; Wang ZS J Environ Sci (China); 2003 Nov; 15(6):773-8. PubMed ID: 14758895 [TBL] [Abstract][Full Text] [Related]
43. Characteristics of biostability of drinking water in aged pipes after water source switching: ATP evaluation, biofilms niches and microbial community transition. Pan R; Zhang K; Cen C; Zhou X; Xu J; Wu J; Wu X Environ Pollut; 2021 Feb; 271():116293. PubMed ID: 33412444 [TBL] [Abstract][Full Text] [Related]
44. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Liu S; Gunawan C; Barraud N; Rice SA; Harry EJ; Amal R Environ Sci Technol; 2016 Sep; 50(17):8954-76. PubMed ID: 27479445 [TBL] [Abstract][Full Text] [Related]
45. Removal of soft deposits from the distribution system improves the drinking water quality. Lehtola MJ; Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T Water Res; 2004 Feb; 38(3):601-10. PubMed ID: 14723929 [TBL] [Abstract][Full Text] [Related]
46. Interaction between phosphorus and biodegradable organic carbon on drinking water biofilm subject to chlorination. Park SK; Hu JY J Appl Microbiol; 2010 Jun; 108(6):2077-87. PubMed ID: 19919617 [TBL] [Abstract][Full Text] [Related]
47. Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration. Derlon N; Mimoso J; Klein T; Koetzsch S; Morgenroth E Water Res; 2014 Sep; 60():164-173. PubMed ID: 24859194 [TBL] [Abstract][Full Text] [Related]
48. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Falkinham JO; Norton CD; LeChevallier MW Appl Environ Microbiol; 2001 Mar; 67(3):1225-31. PubMed ID: 11229914 [TBL] [Abstract][Full Text] [Related]
49. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water. Chu C; Lu C Chemosphere; 2004 Nov; 57(7):531-9. PubMed ID: 15488914 [TBL] [Abstract][Full Text] [Related]
50. The impacts of the AOC concentration on biofilm formation under higher shear force condition. Tsai YP; Pai TY; Qiu JM J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402 [TBL] [Abstract][Full Text] [Related]
51. Impact of flow hydrodynamics and pipe material properties on biofilm development within drinking water systems. Cowle MW; Webster G; Babatunde AO; Bockelmann-Evans BN; Weightman AJ Environ Technol; 2020 Dec; 41(28):3732-3744. PubMed ID: 31120377 [TBL] [Abstract][Full Text] [Related]
52. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water. Hijnen WAM; Schurer R; Bahlman JA; Ketelaars HAM; Italiaander R; van der Wal A; van der Wielen PWJJ Water Res; 2018 Feb; 129():240-251. PubMed ID: 29153877 [TBL] [Abstract][Full Text] [Related]
53. The limitations of hydrodynamic removal of biofilms from the dead-ends in a model drinking water distribution system. Simunič U; Pipp P; Dular M; Stopar D Water Res; 2020 Jul; 178():115838. PubMed ID: 32361344 [TBL] [Abstract][Full Text] [Related]
54. Modification on the conventional procedure to measure AOC in drinking water. Li FZ; Sang JQ; Zhang XH; Wang ZS J Environ Sci (China); 2004; 16(6):996-1000. PubMed ID: 15900737 [TBL] [Abstract][Full Text] [Related]
55. A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water. Ohkouchi Y; Ly BT; Ishikawa S; Aoki Y; Echigo S; Itoh S Environ Technol; 2011 Oct; 32(13-14):1605-13. PubMed ID: 22329152 [TBL] [Abstract][Full Text] [Related]
56. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System. Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739 [TBL] [Abstract][Full Text] [Related]
57. Enhancing biological stability of disinfectant-free drinking water by reducing high molecular weight organic compounds with ultrafiltration posttreatment. Schurer R; Schippers JC; Kennedy MD; Cornelissen ER; Salinas-Rodriguez SG; Hijnen WAM; van der Wal A Water Res; 2019 Nov; 164():114927. PubMed ID: 31401326 [TBL] [Abstract][Full Text] [Related]
58. Full-scale studies of factors related to coliform regrowth in drinking water. LeChevallier MW; Welch NJ; Smith DB Appl Environ Microbiol; 1996 Jul; 62(7):2201-11. PubMed ID: 8779557 [TBL] [Abstract][Full Text] [Related]
59. Potential impacts of changing supply-water quality on drinking water distribution: A review. Liu G; Zhang Y; Knibbe WJ; Feng C; Liu W; Medema G; van der Meer W Water Res; 2017 Jun; 116():135-148. PubMed ID: 28329709 [TBL] [Abstract][Full Text] [Related]
60. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality. Douterelo I; Jackson M; Solomon C; Boxall J Appl Microbiol Biotechnol; 2016 Apr; 100(7):3301-11. PubMed ID: 26637423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]