These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33962239)

  • 61. Comparison of biofilm cell quantification methods for drinking water distribution systems.
    Waller SA; Packman AI; Hausner M
    J Microbiol Methods; 2018 Jan; 144():8-21. PubMed ID: 29111400
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water.
    Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM
    J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Differences in dissolved organic matter between reclaimed water source and drinking water source.
    Hu HY; Du Y; Wu QY; Zhao X; Tang X; Chen Z
    Sci Total Environ; 2016 May; 551-552():133-42. PubMed ID: 26874770
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water.
    Hammes F; Salhi E; Köster O; Kaiser HP; Egli T; von Gunten U
    Water Res; 2006 Jul; 40(12):2275-86. PubMed ID: 16777174
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of residual chlorine on the interaction between bacterial growth and assimilable organic carbon and biodegradable organic carbon in reclaimed water.
    Ren X; Chen H
    Sci Total Environ; 2021 Jan; 752():141223. PubMed ID: 32898796
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system: detection of a large nitrite-oxidizing population associated with Nitrospira spp.
    Martiny AC; Albrechtsen HJ; Arvin E; Molin S
    Appl Environ Microbiol; 2005 Dec; 71(12):8611-7. PubMed ID: 16332854
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system.
    Douterelo I; Fish KE; Boxall JB
    Water Res; 2018 Sep; 141():74-85. PubMed ID: 29778067
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Occurrence of Legionella spp. in Water-Main Biofilms from Two Drinking Water Distribution Systems.
    Waak MB; LaPara TM; Hallé C; Hozalski RM
    Environ Sci Technol; 2018 Jul; 52(14):7630-7639. PubMed ID: 29902377
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems.
    Weinrich LA; Jjemba PK; Giraldo E; LeChevallier MW
    Water Res; 2010 Oct; 44(18):5367-75. PubMed ID: 20619432
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A rapid technique for assessing assimilable organic carbon of UV/H2O2-treated water.
    Bazri MM; Mohseni M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1086-93. PubMed ID: 23573929
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.
    Douterelo I; Husband S; Boxall JB
    Water Res; 2014 May; 54():100-14. PubMed ID: 24565801
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.
    Park SK; Hu JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):968-77. PubMed ID: 20512722
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system.
    Fu Y; Peng H; Liu J; Nguyen TH; Hashmi MZ; Shen C
    Sci Total Environ; 2021 Apr; 764():142851. PubMed ID: 33097267
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Use of Pseudomonas bacteria strains for determining water-assimilable carbon].
    Kiprianova EA; Iaroshenko LV; Avdeeva LV
    Mikrobiol Z; 2010; 72(3):3-7. PubMed ID: 20695222
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.
    Fish K; Osborn AM; Boxall JB
    Sci Total Environ; 2017 Sep; 593-594():571-580. PubMed ID: 28360007
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biofilm formation in drinking water affected by low concentrations of phosphorus.
    Lehtola MJ; Miettinen IT; Martikainen PJ
    Can J Microbiol; 2002 Jun; 48(6):494-9. PubMed ID: 12166676
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.
    Ginige MP; Wylie J; Plumb J
    Biofouling; 2011 Feb; 27(2):151-63. PubMed ID: 21229405
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Water and biofilm in drinking water distribution systems in the Netherlands.
    Learbuch KLG; Smidt H; van der Wielen PWJJ
    Sci Total Environ; 2022 Jul; 831():154940. PubMed ID: 35367266
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.
    Sun X; Yuan T; Ni H; Li Y; Hu Y
    J Environ Sci (China); 2016 Jul; 45():1-6. PubMed ID: 27372113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.