These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 33962239)
81. Effect of flow fluctuation on water pollution in drinking water distribution systems. Xin C; Khu ST; Wang T; Zuo X; Zhang Y Environ Res; 2024 Apr; 246():118142. PubMed ID: 38218524 [TBL] [Abstract][Full Text] [Related]
82. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study. Xu J; Huang C; Shi X; Dong S; Yuan B; Nguyen TH Sci Total Environ; 2018 Nov; 642():516-525. PubMed ID: 29908510 [TBL] [Abstract][Full Text] [Related]
83. Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water. Kaplan LA; Bott TL; Reasoner DJ Appl Environ Microbiol; 1993 May; 59(5):1532-9. PubMed ID: 8517748 [TBL] [Abstract][Full Text] [Related]
84. Microbial abundance and community composition in biofilms on in-pipe sensors in a drinking water distribution system. Kitajima M; Cruz MC; Williams RBH; Wuertz S; Whittle AJ Sci Total Environ; 2021 Apr; 766():142314. PubMed ID: 33077212 [TBL] [Abstract][Full Text] [Related]
85. Survival of Mycobacterium avium in a model distribution system. Norton CD; LeChevallier MW; Falkinham JO Water Res; 2004 Mar; 38(6):1457-66. PubMed ID: 15016522 [TBL] [Abstract][Full Text] [Related]
86. Effective removal of disinfection by-products and assimilable organic carbon: an advanced water treatment system. Lou JC; Chang TW; Huang CE J Hazard Mater; 2009 Dec; 172(2-3):1365-71. PubMed ID: 19744776 [TBL] [Abstract][Full Text] [Related]
87. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water. Lehtola MJ; Miettinen IT; Vartiainen T; Rantakokko P; Hirvonen A; Martikainen PJ Water Res; 2003 Mar; 37(5):1064-70. PubMed ID: 12553981 [TBL] [Abstract][Full Text] [Related]
88. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Zlatanović L; van der Hoek JP; Vreeburg JHG Water Res; 2017 Oct; 123():761-772. PubMed ID: 28732329 [TBL] [Abstract][Full Text] [Related]
89. Bacterial colonization of pellet softening reactors used during drinking water treatment. Hammes F; Boon N; Vital M; Ross P; Magic-Knezev A; Dignum M Appl Environ Microbiol; 2011 Feb; 77(3):1041-8. PubMed ID: 21148700 [TBL] [Abstract][Full Text] [Related]
90. The microbial ecology of a Mediterranean chlorinated drinking water distribution systems in the city of Valencia (Spain). Del Olmo G; Husband S; Sánchez Briones C; Soriano A; Calero Preciado C; Macian J; Douterelo I Sci Total Environ; 2021 Feb; 754():142016. PubMed ID: 33254950 [TBL] [Abstract][Full Text] [Related]
91. Development of an ATP luminescence-based method for assimilable organic carbon determination in reclaimed water. Li GQ; Yu T; Wu QY; Lu Y; Hu HY Water Res; 2017 Oct; 123():345-352. PubMed ID: 28683375 [TBL] [Abstract][Full Text] [Related]
92. A pilot study of bacteriological population changes through potable water treatment and distribution. Norton CD; LeChevallier MW Appl Environ Microbiol; 2000 Jan; 66(1):268-76. PubMed ID: 10618235 [TBL] [Abstract][Full Text] [Related]
93. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. Waak MB; Hozalski RM; Hallé C; LaPara TM Microbiome; 2019 Jun; 7(1):87. PubMed ID: 31174608 [TBL] [Abstract][Full Text] [Related]
94. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system. Fish KE; Collins R; Green NH; Sharpe RL; Douterelo I; Osborn AM; Boxall JB PLoS One; 2015; 10(2):e0115824. PubMed ID: 25706303 [TBL] [Abstract][Full Text] [Related]
95. Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Juhna T; Birzniece D; Larsson S; Zulenkovs D; Sharipo A; Azevedo NF; Ménard-Szczebara F; Castagnet S; Féliers C; Keevil CW Appl Environ Microbiol; 2007 Nov; 73(22):7456-64. PubMed ID: 17720845 [TBL] [Abstract][Full Text] [Related]
96. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. Aggarwal S; Gomez-Smith CK; Jeon Y; LaPara TM; Waak MB; Hozalski RM Environ Sci Technol; 2018 Nov; 52(22):13077-13088. PubMed ID: 30351033 [TBL] [Abstract][Full Text] [Related]
97. Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes. Lehtola MJ; Miettinen IT; Vartiainen T; Martikainen PJ Water Res; 2002 Sep; 36(15):3681-90. PubMed ID: 12369515 [TBL] [Abstract][Full Text] [Related]
98. Measurement of free chlorine levels in water using potentiometric responses of biofilms and applications for monitoring and managing the quality of potable water. Saboe D; Hristovski KD; Burge SR; Burge RG; Taylor E; Hoffman DA Sci Total Environ; 2021 Apr; 766():144424. PubMed ID: 33421790 [TBL] [Abstract][Full Text] [Related]
99. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems. Lin H; Zhu X; Wang Y; Yu X J Water Health; 2017 Apr; 15(2):218-227. PubMed ID: 28362303 [TBL] [Abstract][Full Text] [Related]
100. Microbial diversity, ecological networks and functional traits associated to materials used in drinking water distribution systems. Douterelo I; Dutilh BE; Arkhipova K; Calero C; Husband S Water Res; 2020 Apr; 173():115586. PubMed ID: 32065938 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]