These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33962890)

  • 1. Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies.
    Hurskainen M; Cyr-Depauw C; Thébaud B
    Semin Fetal Neonatal Med; 2022 Feb; 27(1):101243. PubMed ID: 33962890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem cell biology and regenerative medicine for neonatal lung diseases.
    Kang M; Thébaud B
    Pediatr Res; 2018 Jan; 83(1-2):291-297. PubMed ID: 28922348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding alveolarization to induce lung regeneration.
    Rodríguez-Castillo JA; Pérez DB; Ntokou A; Seeger W; Morty RE; Ahlbrecht K
    Respir Res; 2018 Aug; 19(1):148. PubMed ID: 30081910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem cell therapies for neonatal lung diseases: Are we there yet?
    Thébaud B
    Semin Perinatol; 2023 Apr; 47(3):151724. PubMed ID: 36967368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
    Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC
    PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease.
    Thébaud B; Abman SH
    Am J Respir Crit Care Med; 2007 May; 175(10):978-85. PubMed ID: 17272782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia.
    Silva DM; Nardiello C; Pozarska A; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2015 Dec; 309(11):L1239-72. PubMed ID: 26361876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted lung development and bronchopulmonary dysplasia: opportunities for lung repair and regeneration.
    Baker CD; Alvira CM
    Curr Opin Pediatr; 2014 Jun; 26(3):306-14. PubMed ID: 24739494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newborn Mice Lacking the Gene for Cyp1a1 Are More Susceptible to Oxygen-Mediated Lung Injury, and Are Rescued by Postnatal β-Naphthoflavone Administration: Implications for Bronchopulmonary Dysplasia in Premature Infants.
    Maturu P; Wei-Liang Y; Jiang W; Wang L; Lingappan K; Barrios R; Liang Y; Moorthy B; Couroucli XI
    Toxicol Sci; 2017 May; 157(1):260-271. PubMed ID: 28201809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia.
    Reiter J; Drummond S; Sammour I; Huang J; Florea V; Dornas P; Hare JM; Rodrigues CO; Young KC
    Respir Res; 2017 Jul; 18(1):137. PubMed ID: 28701189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of Vascular Endothelial Growth Factor in Amniotic Fluid Stem Cells Enhances Their Potential to Attenuate Lung Injury in a Preterm Rabbit Model of Bronchopulmonary Dysplasia.
    Jiménez J; Lesage F; Richter J; Nagatomo T; Salaets T; Zia S; Mori Da Cunha MG; Vanoirbeek J; Deprest JA; Toelen J
    Neonatology; 2018; 113(3):275-285. PubMed ID: 29393249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE ROLE OF MITOCHONDRIAL FATTY ACID USE IN NEONATAL LUNG INJURY AND REPAIR.
    Dennery PA; Carr J; Peterson A; Yao H
    Trans Am Clin Climatol Assoc; 2018; 129():195-201. PubMed ID: 30166714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization.
    Iosef C; Alastalo TP; Hou Y; Chen C; Adams ES; Lyu SC; Cornfield DN; Alvira CM
    Am J Physiol Lung Cell Mol Physiol; 2012 May; 302(10):L1023-36. PubMed ID: 22367785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental animal model of bronchopulmonary dysplasia: Secondary publication.
    Namba F
    Pediatr Int; 2021 May; 63(5):504-509. PubMed ID: 33465831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The promise of stem cells in bronchopulmonary dysplasia.
    O'Reilly M; Thébaud B
    Semin Perinatol; 2013 Apr; 37(2):79-84. PubMed ID: 23582961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary inflammation and bronchopulmonary dysplasia.
    Speer CP
    J Perinatol; 2006 May; 26 Suppl 1():S57-62; discussion S63-4. PubMed ID: 16625227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of litter size on survival, growth and lung alveolarization of newborn mouse pups.
    Feddersen S; Nardiello C; Selvakumar B; Vadász I; Herold S; Seeger W; Morty RE
    Ann Anat; 2020 Nov; 232():151579. PubMed ID: 32688019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.
    Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia.
    Lignelli E; Palumbo F; Myti D; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2019 Dec; 317(6):L832-L887. PubMed ID: 31596603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms initiating lung injury in the preterm.
    Jobe AH; Ikegami M
    Early Hum Dev; 1998 Nov; 53(1):81-94. PubMed ID: 10193929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.