These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 33962890)
1. Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies. Hurskainen M; Cyr-Depauw C; Thébaud B Semin Fetal Neonatal Med; 2022 Feb; 27(1):101243. PubMed ID: 33962890 [TBL] [Abstract][Full Text] [Related]
2. Stem cell biology and regenerative medicine for neonatal lung diseases. Kang M; Thébaud B Pediatr Res; 2018 Jan; 83(1-2):291-297. PubMed ID: 28922348 [TBL] [Abstract][Full Text] [Related]
4. Stem cell therapies for neonatal lung diseases: Are we there yet? Thébaud B Semin Perinatol; 2023 Apr; 47(3):151724. PubMed ID: 36967368 [TBL] [Abstract][Full Text] [Related]
5. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury. Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256 [TBL] [Abstract][Full Text] [Related]
6. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Thébaud B; Abman SH Am J Respir Crit Care Med; 2007 May; 175(10):978-85. PubMed ID: 17272782 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Silva DM; Nardiello C; Pozarska A; Morty RE Am J Physiol Lung Cell Mol Physiol; 2015 Dec; 309(11):L1239-72. PubMed ID: 26361876 [TBL] [Abstract][Full Text] [Related]
8. Disrupted lung development and bronchopulmonary dysplasia: opportunities for lung repair and regeneration. Baker CD; Alvira CM Curr Opin Pediatr; 2014 Jun; 26(3):306-14. PubMed ID: 24739494 [TBL] [Abstract][Full Text] [Related]
9. Newborn Mice Lacking the Gene for Cyp1a1 Are More Susceptible to Oxygen-Mediated Lung Injury, and Are Rescued by Postnatal β-Naphthoflavone Administration: Implications for Bronchopulmonary Dysplasia in Premature Infants. Maturu P; Wei-Liang Y; Jiang W; Wang L; Lingappan K; Barrios R; Liang Y; Moorthy B; Couroucli XI Toxicol Sci; 2017 May; 157(1):260-271. PubMed ID: 28201809 [TBL] [Abstract][Full Text] [Related]
10. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Reiter J; Drummond S; Sammour I; Huang J; Florea V; Dornas P; Hare JM; Rodrigues CO; Young KC Respir Res; 2017 Jul; 18(1):137. PubMed ID: 28701189 [TBL] [Abstract][Full Text] [Related]
11. Upregulation of Vascular Endothelial Growth Factor in Amniotic Fluid Stem Cells Enhances Their Potential to Attenuate Lung Injury in a Preterm Rabbit Model of Bronchopulmonary Dysplasia. Jiménez J; Lesage F; Richter J; Nagatomo T; Salaets T; Zia S; Mori Da Cunha MG; Vanoirbeek J; Deprest JA; Toelen J Neonatology; 2018; 113(3):275-285. PubMed ID: 29393249 [TBL] [Abstract][Full Text] [Related]
12. THE ROLE OF MITOCHONDRIAL FATTY ACID USE IN NEONATAL LUNG INJURY AND REPAIR. Dennery PA; Carr J; Peterson A; Yao H Trans Am Clin Climatol Assoc; 2018; 129():195-201. PubMed ID: 30166714 [TBL] [Abstract][Full Text] [Related]
13. Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization. Iosef C; Alastalo TP; Hou Y; Chen C; Adams ES; Lyu SC; Cornfield DN; Alvira CM Am J Physiol Lung Cell Mol Physiol; 2012 May; 302(10):L1023-36. PubMed ID: 22367785 [TBL] [Abstract][Full Text] [Related]
14. An experimental animal model of bronchopulmonary dysplasia: Secondary publication. Namba F Pediatr Int; 2021 May; 63(5):504-509. PubMed ID: 33465831 [TBL] [Abstract][Full Text] [Related]
15. The promise of stem cells in bronchopulmonary dysplasia. O'Reilly M; Thébaud B Semin Perinatol; 2013 Apr; 37(2):79-84. PubMed ID: 23582961 [TBL] [Abstract][Full Text] [Related]