BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33962954)

  • 1. Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction.
    Meng Z; Xia K
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33962954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Path-Spectral (PPS) Based Machine Learning for Protein-Ligand Binding Affinity Prediction.
    Liu R; Liu X; Wu J
    J Chem Inf Model; 2023 Feb; 63(3):1066-1075. PubMed ID: 36647267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent spectral based ensemble learning (PerSpect-EL) for protein-protein binding affinity prediction.
    Wee J; Xia K
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ollivier Persistent Ricci Curvature-Based Machine Learning for the Protein-Ligand Binding Affinity Prediction.
    Wee J; Xia K
    J Chem Inf Model; 2021 Apr; 61(4):1617-1626. PubMed ID: 33724038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forman persistent Ricci curvature (FPRC)-based machine learning models for protein-ligand binding affinity prediction.
    Wee J; Xia K
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design.
    Jiang P; Chi Y; Li XS; Liu X; Hua XS; Xia K
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34958660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    PLoS Comput Biol; 2022 Apr; 18(4):e1009943. PubMed ID: 35385478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design.
    Liu X; Wang X; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent Homology for RNA Data Analysis.
    Xia K; Liu X; Wee J
    Methods Mol Biol; 2023; 2627():211-229. PubMed ID: 36959450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-ligand binding affinity prediction model based on graph attention network.
    Yuan H; Huang J; Li J
    Math Biosci Eng; 2021 Oct; 18(6):9148-9162. PubMed ID: 34814340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent spectral simplicial complex-based machine learning for chromosomal structural analysis in cellular differentiation.
    Gong W; Wee J; Wu MC; Sun X; Li C; Xia K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35536545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.
    Cang Z; Wei GW
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28677268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties.
    Kundu I; Paul G; Banerjee R
    RSC Adv; 2018 Mar; 8(22):12127-12137. PubMed ID: 35539386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods.
    Wang DD; Ou-Yang L; Xie H; Zhu M; Yan H
    Comput Struct Biotechnol J; 2020; 18():439-454. PubMed ID: 32153730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EISA-Score: Element Interactive Surface Area Score for Protein-Ligand Binding Affinity Prediction.
    Rana MM; Nguyen DD
    J Chem Inf Model; 2022 Sep; 62(18):4329-4341. PubMed ID: 36108270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.