These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33963200)
41. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. Stanford MG; Yang K; Chyan Y; Kittrell C; Tour JM ACS Nano; 2019 Mar; 13(3):3474-3482. PubMed ID: 30848881 [TBL] [Abstract][Full Text] [Related]
42. Laser-Induced Graphene from Paper for Mechanical Sensing. Kulyk B; Silva BFR; Carvalho AF; Silvestre S; Fernandes AJS; Martins R; Fortunato E; Costa FM ACS Appl Mater Interfaces; 2021 Mar; 13(8):10210-10221. PubMed ID: 33619955 [TBL] [Abstract][Full Text] [Related]
43. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. Zheng J; Zhu S; Xu P; Dunham S; Majumdar A ACS Appl Mater Interfaces; 2020 May; 12(19):21827-21836. PubMed ID: 32297737 [TBL] [Abstract][Full Text] [Related]
44. Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber. Huang L; Wang H; Wu P; Huang W; Gao W; Fang F; Cai N; Chen R; Zhu Z Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751740 [TBL] [Abstract][Full Text] [Related]
45. Flexible stretchable electrothermally/photothermally dual-driven heaters from nano-embedded hierarchical Cu Zhang Q; Liu D; Pan W; Pei H; Wang K; Xu S; Liu Y; Cao S J Colloid Interface Sci; 2022 Oct; 624():564-578. PubMed ID: 35690011 [TBL] [Abstract][Full Text] [Related]
46. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Xuan X; Kim JY; Hui X; Das PS; Yoon HS; Park JY Biosens Bioelectron; 2018 Nov; 120():160-167. PubMed ID: 30173012 [TBL] [Abstract][Full Text] [Related]
47. Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films. Cao M; Wang M; Li L; Qiu H; Yang Z ACS Appl Mater Interfaces; 2018 Jan; 10(1):1077-1083. PubMed ID: 29232099 [TBL] [Abstract][Full Text] [Related]
48. Interfacial Laser-Induced Graphene Enabling High-Performance Liquid-Solid Triboelectric Nanogenerator. Chen Y; Xie B; Long J; Kuang Y; Chen X; Hou M; Gao J; Zhou S; Fan B; He Y; Zhang YT; Wong CP; Wang Z; Zhao N Adv Mater; 2021 Nov; 33(44):e2104290. PubMed ID: 34510586 [TBL] [Abstract][Full Text] [Related]
50. Green Synthesis of Laser-Induced Graphene with Copper Oxide Nanoparticles for Deicing Based on Photo-Electrothermal Effect. Lee JU; Lee JH; Lee CW; Cho SC; Hong SM; Ma YW; Jeong SY; Shin BS Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335776 [TBL] [Abstract][Full Text] [Related]
51. A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Zhao G; Wang X; Liu G; Cao Y; Liu N; Thi Dieu Thuy N; Zhang L; Yu M Anal Chim Acta; 2022 Feb; 1194():339413. PubMed ID: 35063159 [TBL] [Abstract][Full Text] [Related]
52. Printed fabric heater based on Ag nanowire/carbon nanotube composites. Ahn J; Gu J; Hwang B; Kang H; Hwang S; Jeon S; Jeong J; Park I Nanotechnology; 2019 Nov; 30(45):455707. PubMed ID: 31349233 [TBL] [Abstract][Full Text] [Related]
53. Siloxene-Functionalized Laser-Induced Graphene via COSi Bonding for High-Performance Heavy Metal Sensing Patch Applications. Hui X; Sharma S; Sharifuzzaman M; Zahed MA; Shin YD; Seonu SK; Song HS; Park JY Small; 2022 Jun; 18(25):e2201247. PubMed ID: 35595710 [TBL] [Abstract][Full Text] [Related]
54. Three-Dimensional Printable High-Temperature and High-Rate Heaters. Yao Y; Fu KK; Yan C; Dai J; Chen Y; Wang Y; Zhang B; Hitz E; Hu L ACS Nano; 2016 May; 10(5):5272-9. PubMed ID: 27152732 [TBL] [Abstract][Full Text] [Related]
55. Different Roles of Surface Chemistry and Roughness of Laser-Induced Graphene: Implications for Tunable Wettability. Dallinger A; Steinwender F; Gritzner M; Greco F ACS Appl Nano Mater; 2023 Sep; 6(18):16201-16211. PubMed ID: 37772265 [TBL] [Abstract][Full Text] [Related]
56. Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. Thakur AK; Mahbub H; Nowrin FH; Malmali M ACS Appl Mater Interfaces; 2022 Oct; 14(41):46884-46895. PubMed ID: 36200611 [TBL] [Abstract][Full Text] [Related]
57. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. Dixit N; Singh SP ACS Omega; 2022 Feb; 7(6):5112-5130. PubMed ID: 35187327 [TBL] [Abstract][Full Text] [Related]
58. Laser-Induced Graphene: En Route to Smart Sensing. Huang L; Su J; Song Y; Ye R Nanomicro Lett; 2020; 12(1):157. PubMed ID: 32835028 [TBL] [Abstract][Full Text] [Related]
59. Laser-Induced Graphene-PVA Composites as Robust Electrically Conductive Water Treatment Membranes. Thakur AK; Singh SP; Kleinberg MN; Gupta A; Arnusch CJ ACS Appl Mater Interfaces; 2019 Mar; 11(11):10914-10921. PubMed ID: 30794741 [TBL] [Abstract][Full Text] [Related]