These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33963200)
61. Sweat analysis with a wearable sensing platform based on laser-induced graphene. Vivaldi F; Dallinger A; Poma N; Bonini A; Biagini D; Salvo P; Borghi F; Tavanti A; Greco F; Di Francesco F APL Bioeng; 2022 Sep; 6(3):036104. PubMed ID: 36147196 [TBL] [Abstract][Full Text] [Related]
62. Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Ji S; He W; Wang K; Ran Y; Ye C Small; 2014 Dec; 10(23):4951-60. PubMed ID: 25049116 [TBL] [Abstract][Full Text] [Related]
63. Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene. Bhattacharya G; Fishlock SJ; Hussain S; Choudhury S; Xiang A; Kandola B; Pritam A; Soin N; Roy SS; McLaughlin JA ACS Appl Mater Interfaces; 2022 Jul; 14(27):31109-31120. PubMed ID: 35767835 [TBL] [Abstract][Full Text] [Related]
64. Laser-Induced Graphene Paper Heaters with Multimodally Patternable Electrothermal Performance for Low-Energy Manufacturing of Composites. Chen J; Wang Y; Liu F; Luo S ACS Appl Mater Interfaces; 2020 May; 12(20):23284-23297. PubMed ID: 32329998 [TBL] [Abstract][Full Text] [Related]
65. Electrical and Thermal Properties of Heater-Sensor Microsystems Patterned in TCO Films for Wide-Range Temperature Applications from 15 K to 350 K. Pawlak R; Lebioda M Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874822 [TBL] [Abstract][Full Text] [Related]
66. Laser Direct Writing of Flexible Thermal Flow Sensors. Xu K; Li Q; Lu Y; Luo H; Jian Y; Li D; Kong D; Wang R; Tan J; Cai Z; Yang G; Zhu B; Ye Q; Yang H; Li T Nano Lett; 2023 Nov; 23(22):10317-10325. PubMed ID: 37937967 [TBL] [Abstract][Full Text] [Related]
67. Conducting Polymer-Reinforced Laser-Irradiated Graphene as a Heterostructured 3D Transducer for Flexible Skin Patch Biosensors. Meng L; Turner APF; Mak WC ACS Appl Mater Interfaces; 2021 Nov; 13(45):54456-54465. PubMed ID: 34726900 [TBL] [Abstract][Full Text] [Related]
68. High-Speed and On-Chip Optical Switch Based on a Graphene Microheater. Nakamura S; Sekiya K; Matano S; Shimura Y; Nakade Y; Nakagawa K; Monnai Y; Maki H ACS Nano; 2022 Feb; 16(2):2690-2698. PubMed ID: 35156795 [TBL] [Abstract][Full Text] [Related]
69. Laser-Induced Graphene from Polyimide and Polyethersulfone Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. Getachew BA; Bergsman DS; Grossman JC ACS Appl Mater Interfaces; 2020 Oct; 12(43):48511-48517. PubMed ID: 33052656 [TBL] [Abstract][Full Text] [Related]
70. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Liu J; Ji H; Lv X; Zeng C; Li H; Li F; Qu B; Cui F; Zhou Q Mikrochim Acta; 2022 Jan; 189(2):54. PubMed ID: 35001163 [TBL] [Abstract][Full Text] [Related]
71. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip. Jeong S; Lim J; Kim MY; Yeom J; Cho H; Lee H; Shin YB; Lee JH Biomed Microdevices; 2018 Jan; 20(1):14. PubMed ID: 29376193 [TBL] [Abstract][Full Text] [Related]
72. Microscopic Evaluation of Electrical and Thermal Conduction in Random Metal Wire Networks. Gupta R; Kumar A; Sadasivam S; Walia S; Kulkarni GU; Fisher TS; Marconnet A ACS Appl Mater Interfaces; 2017 Apr; 9(15):13703-13712. PubMed ID: 28326760 [TBL] [Abstract][Full Text] [Related]
73. From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC). Neužil P; Campos CD; Wong CC; Soon JB; Reboud J; Manz A Lab Chip; 2014 Jul; 14(13):2168-76. PubMed ID: 24828468 [TBL] [Abstract][Full Text] [Related]
74. One-step selective laser patterning of copper/graphene flexible electrodes. Peng P; Li L; He P; Zhu Y; Fu J; Huang Y; Guo W Nanotechnology; 2019 May; 30(18):185301. PubMed ID: 30641487 [TBL] [Abstract][Full Text] [Related]
75. Flexible, Air-Stable, High-Performance Heaters Based on Nanoscale-Thick Graphite Films. Deokar G; Reguig A; Tripathi M; Buttner U; Fina A; Dalton AB; Costa PMFJ ACS Appl Mater Interfaces; 2022 Apr; 14(15):17899-17910. PubMed ID: 35357119 [TBL] [Abstract][Full Text] [Related]
76. Laser-Induced Graphene on Additive Manufacturing Parts. Jiao L; Chua ZY; Moon SK; Song J; Bi G; Zheng H; Lee B; Koo J Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30641948 [TBL] [Abstract][Full Text] [Related]
77. Spatiotemporally Controlled Multiplexed Photothermal Microfluidic Pumping under Monitoring of On-Chip Thermal Imaging. Fu G; Zhu Y; Wang W; Zhou M; Li X ACS Sens; 2019 Sep; 4(9):2481-2490. PubMed ID: 31452364 [TBL] [Abstract][Full Text] [Related]
78. Temperature field regulation of a droplet using an acoustothermal heater. Li L; Wu E; Jia K; Yang K Lab Chip; 2021 Aug; 21(16):3184-3194. PubMed ID: 34195725 [TBL] [Abstract][Full Text] [Related]
79. Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Soares RRA; Hjort RG; Pola CC; Parate K; Reis EL; Soares NFF; McLamore ES; Claussen JC; Gomes CL ACS Sens; 2020 Jul; 5(7):1900-1911. PubMed ID: 32348124 [TBL] [Abstract][Full Text] [Related]