These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33963554)

  • 21. Social influences on mammalian circadian rhythms: animal and human studies.
    Mistlberger RE; Skene DJ
    Biol Rev Camb Philos Soc; 2004 Aug; 79(3):533-56. PubMed ID: 15366762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.
    Kumar Jha P; Challet E; Kalsbeek A
    Mol Cell Endocrinol; 2015 Dec; 418 Pt 1():74-88. PubMed ID: 25662277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian clock-regulated physiological outputs: dynamic responses in nature.
    Kinmonth-Schultz HA; Golembeski GS; Imaizumi T
    Semin Cell Dev Biol; 2013 May; 24(5):407-13. PubMed ID: 23435352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic-sensing of the skeletal muscle clock coordinates fuel oxidation.
    Yin H; Li W; Chatterjee S; Xiong X; Saha P; Yechoor V; Ma K
    FASEB J; 2020 May; 34(5):6613-6627. PubMed ID: 32212194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock.
    Kemler D; Wolff CA; Esser KA
    J Physiol; 2020 Sep; 598(17):3631-3644. PubMed ID: 32537739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action.
    Dalbram E; Basse AL; Zierath JR; Treebak JT
    J Appl Physiol (1985); 2019 Apr; 126(4):993-1005. PubMed ID: 30730814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro.
    Loizides-Mangold U; Perrin L; Vandereycken B; Betts JA; Walhin JP; Templeman I; Chanon S; Weger BD; Durand C; Robert M; Paz Montoya J; Moniatte M; Karagounis LG; Johnston JD; Gachon F; Lefai E; Riezman H; Dibner C
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):E8565-E8574. PubMed ID: 28973848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interplay between cellular redox oscillations and circadian clocks.
    Rey G; Reddy AB
    Diabetes Obes Metab; 2015 Sep; 17 Suppl 1():55-64. PubMed ID: 26332969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circadian timing of metabolism in animal models and humans.
    Dibner C; Schibler U
    J Intern Med; 2015 May; 277(5):513-27. PubMed ID: 25599827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway.
    Small L; Altıntaş A; Laker RC; Ehrlich A; Pattamaprapanont P; Villarroel J; Pillon NJ; Zierath JR; Barrès R
    J Physiol; 2020 Dec; 598(24):5739-5752. PubMed ID: 32939754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms of the circadian clockwork in mammals.
    Robinson I; Reddy AB
    FEBS Lett; 2014 Aug; 588(15):2477-83. PubMed ID: 24911207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian rhythms, skeletal muscle molecular clocks, and exercise.
    Schroder EA; Esser KA
    Exerc Sport Sci Rev; 2013 Oct; 41(4):224-9. PubMed ID: 23917214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.
    Leliavski A; Dumbell R; Ott V; Oster H
    J Biol Rhythms; 2015 Feb; 30(1):20-34. PubMed ID: 25367898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the clock gene Rev-erbα in metabolism and in the endocrine pancreas.
    Vieira E; Merino B; Quesada I
    Diabetes Obes Metab; 2015 Sep; 17 Suppl 1():106-14. PubMed ID: 26332975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adipose Clocks: Burning the Midnight Oil.
    Henriksson E; Lamia KA
    J Biol Rhythms; 2015 Oct; 30(5):364-73. PubMed ID: 25926681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photic Entrainment of the Circadian System.
    Ashton A; Foster RG; Jagannath A
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exercise as a Peripheral Circadian Clock Resynchronizer in Vascular and Skeletal Muscle Aging.
    Silva BSA; Uzeloto JS; Lira FS; Pereira T; Coelho-E-Silva MJ; Caseiro A
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian regulation of muscle growth independent of locomotor activity.
    Kelu JJ; Pipalia TG; Hughes SM
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31208-31218. PubMed ID: 33229575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm.
    Haupt S; Eckstein ML; Wolf A; Zimmer RT; Wachsmuth NB; Moser O
    Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33808424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-restricted feeding during the inactive phase abolishes the daily rhythm in mitochondrial respiration in rat skeletal muscle.
    de Goede P; Wüst RCI; Schomakers BV; Denis S; Vaz FM; Pras-Raves ML; van Weeghel M; Yi CX; Kalsbeek A; Houtkooper RH
    FASEB J; 2022 Feb; 36(2):e22133. PubMed ID: 35032416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.