These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 33963617)

  • 1. Striated muscle activator of Rho signalling (STARS) overexpression in the mdx mouse enhances muscle functional capacity and regulates the actin cytoskeleton and oxidative phosphorylation pathways.
    Sadler KJ; Gatta PAD; Naim T; Wallace MA; Lee A; Zaw T; Lindsay A; Chung RS; Bello L; Pegoraro E; Lamon S; Lynch GS; Russell AP
    Exp Physiol; 2021 Jul; 106(7):1597-1611. PubMed ID: 33963617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
    Lindsay A; McCourt PM; Karachunski P; Lowe DA; Ervasti JM
    Free Radic Biol Med; 2018 Dec; 129():364-371. PubMed ID: 30312761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle.
    Kennedy TL; Swiderski K; Murphy KT; Gehrig SM; Curl CL; Chandramouli C; Febbraio MA; Delbridge LM; Koopman R; Lynch GS
    Am J Pathol; 2016 Dec; 186(12):3246-3260. PubMed ID: 27750047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing muscle contractility through low-frequency stimulation alters tibial bone geometry and reduces bone strength in
    Chan AS; Hardee JP; Blank M; Cho EH; McGregor NE; Sims NA; Lynch GS
    J Appl Physiol (1985); 2023 Jul; 135(1):77-87. PubMed ID: 37262103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhoA/ROCK signalling activated by ARHGEF3 promotes muscle weakness via autophagy in dystrophic mdx mice.
    You JS; Kim Y; Lee S; Bashir R; Chen J
    J Cachexia Sarcopenia Muscle; 2023 Aug; 14(4):1880-1893. PubMed ID: 37311604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity.
    Hardee JP; Martins KJB; Miotto PM; Ryall JG; Gehrig SM; Reljic B; Naim T; Chung JD; Trieu J; Swiderski K; Philp AM; Philp A; Watt MJ; Stroud DA; Koopman R; Steinberg GR; Lynch GS
    Mol Metab; 2021 Mar; 45():101157. PubMed ID: 33359740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pannexin 1 dysregulation in Duchenne muscular dystrophy and its exacerbation of dystrophic features in mdx mice.
    Freeman E; Langlois S; Leyba MF; Ammar T; Léger Z; McMillan HJ; Renaud JM; Jasmin BJ; Cowan KN
    Skelet Muscle; 2024 Apr; 14(1):8. PubMed ID: 38671506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways.
    McCourt JL; Stearns-Reider KM; Mamsa H; Kannan P; Afsharinia MH; Shu C; Gibbs EM; Shin KM; Kurmangaliyev YZ; Schmitt LR; Hansen KC; Crosbie RH
    Skelet Muscle; 2023 Jan; 13(1):1. PubMed ID: 36609344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy.
    Alves FM; Kysenius K; Caldow MK; Hardee JP; Chung JD; Trieu J; Hare DJ; Crouch PJ; Ayton S; Bush AI; Lynch GS; Koopman R
    J Cachexia Sarcopenia Muscle; 2022 Jun; 13(3):1541-1553. PubMed ID: 35249268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H
    Hughes MC; Ramos SV; Turnbull PC; Rebalka IA; Cao A; Monaco CMF; Varah NE; Edgett BA; Huber JS; Tadi P; Delfinis LJ; Schlattner U; Simpson JA; Hawke TJ; Perry CGR
    J Cachexia Sarcopenia Muscle; 2019 Jun; 10(3):643-661. PubMed ID: 30938481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Protective Effect of Human Dystrophin Expressing Chimeric (DEC) Cell Therapy on Amelioration of Function of Cardiac, Respiratory and Skeletal Muscles in Duchenne Muscular Dystrophy.
    Siemionow M; Langa P; Brodowska S; Kozlowska K; Zalants K; Budzynska K; Heydemann A
    Stem Cell Rev Rep; 2022 Dec; 18(8):2872-2892. PubMed ID: 35590083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles.
    Baker PE; Kearney JA; Gong B; Merriam AP; Kuhn DE; Porter JD; Rafael-Fortney JA
    Neurogenetics; 2006 May; 7(2):81-91. PubMed ID: 16525850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle.
    Kennedy TL; Moir L; Hemming S; Edwards B; Squire S; Davies K; Guiraud S
    Skelet Muscle; 2017 Oct; 7(1):22. PubMed ID: 29065908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of circulating sphingosine-1-phosphate worsens mdx soleus muscle dystrophic phenotype.
    Germinario E; Bondì M; Blaauw B; Betto R; Danieli-Betto D
    Exp Physiol; 2020 Nov; 105(11):1895-1906. PubMed ID: 32897592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.
    Burns DP; Rowland J; Canavan L; Murphy KH; Brannock M; O'Malley D; O'Halloran KD; Edge D
    Exp Physiol; 2017 Sep; 102(9):1177-1193. PubMed ID: 28665499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treadmill running and mechanical overloading improved the strength of the plantaris muscle in the dystrophin-desmin double knockout (DKO) mouse.
    Moutachi D; Hyzewicz J; Roy P; Lemaitre M; Bachasson D; Amthor H; Ritvos O; Li Z; Furling D; Agbulut O; Ferry A
    J Physiol; 2024 Aug; 602(15):3641-3660. PubMed ID: 38980963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy.
    Pinniger GJ; Terrill JR; Assan EB; Grounds MD; Arthur PG
    J Physiol; 2017 Dec; 595(23):7093-7107. PubMed ID: 28887840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse.
    Rayavarapu S; Coley W; Cakir E; Jahnke V; Takeda S; Aoki Y; Grodish-Dressman H; Jaiswal JK; Hoffman EP; Brown KJ; Hathout Y; Nagaraju K
    Mol Cell Proteomics; 2013 May; 12(5):1061-73. PubMed ID: 23297347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector-mediated expression of muscle specific kinase restores specific force to muscles in the mdx mouse model of Duchenne muscular dystrophy.
    Ban J; Beqaj B; Phillips WD
    Exp Physiol; 2021 Aug; 106(8):1794-1805. PubMed ID: 34114278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.