These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33963688)

  • 1. Development and validation of MRI-based deep learning models for prediction of microsatellite instability in rectal cancer.
    Zhang W; Yin H; Huang Z; Zhao J; Zheng H; He D; Li M; Tan W; Tian S; Song B
    Cancer Med; 2021 Jun; 10(12):4164-4173. PubMed ID: 33963688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study.
    Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F
    Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer.
    Xing X; Li D; Peng J; Shu Z; Zhang Y; Song Q
    Sci Rep; 2024 May; 14(1):11760. PubMed ID: 38783014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of magnetic resonance imaging-based radiomics models for preoperative prediction of microsatellite instability in rectal cancer.
    Zhang W; Huang Z; Zhao J; He D; Li M; Yin H; Tian S; Zhang H; Song B
    Ann Transl Med; 2021 Jan; 9(2):134. PubMed ID: 33569436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer: Study Protocol Clinical Trial (SPIRIT Compliant).
    Huang Z; Zhang W; He D; Cui X; Tian S; Yin H; Song B
    Medicine (Baltimore); 2020 Mar; 99(10):e19428. PubMed ID: 32150094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiparametric MRI subregion radiomics for preoperative assessment of high-risk subregions in microsatellite instability of rectal cancer patients: a multicenter study.
    Cai Z; Xu Z; Chen Y; Zhang R; Guo B; Chen H; Ouyang F; Chen X; Chen X; Liu D; Luo C; Li X; Liu W; Zhou C; Guan X; Liu Z; Zhao H; Hu Q
    Int J Surg; 2024 Jul; 110(7):4310-4319. PubMed ID: 38498392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrative clinical and CT-based tumoral/peritumoral radiomics nomogram to predict the microsatellite instability in rectal carcinoma.
    Ma Y; Xu X; Lin Y; Li J; Yuan H
    Abdom Radiol (NY); 2024 Mar; 49(3):783-790. PubMed ID: 38001326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Algorithm‑Based MRI Radiomics and Pathomics for Predicting Microsatellite Instability Status in Rectal Cancer: A Multicenter Study.
    Yao X; Deng S; Han X; Huang D; Cao Z; Ning X; Ao W
    Acad Radiol; 2024 Sep; ():. PubMed ID: 39289097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prediction model based on deep learning and radiomics features of DWI for the assessment of microsatellite instability in endometrial cancer.
    Wang J; Song P; Zhang M; Liu W; Zeng X; Chen N; Li Y; Wang M
    Cancer Med; 2024 Aug; 13(16):e70046. PubMed ID: 39171859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Radiomics-based prediction of microsatellite instability in stage Ⅱ and Ⅲ rectal cancer patients based on T2WI MRI and diffusion-weighted imaging].
    Xiang S; Zheng LB; Zhu L; Gao Y; Wang DS; Liu SL; Zhang S; Wang TY; Lu Y
    Zhonghua Wai Ke Za Zhi; 2023 Sep; 61(9):782-787. PubMed ID: 37491171
    [No Abstract]   [Full Text] [Related]  

  • 12. Prognostic Value of the Microsatellite Instability Status in Patients With Stage II/III Rectal Cancer Following Upfront Surgery.
    Oh CR; Kim JE; Kang J; Kim SY; Kim KP; Hong YS; Lim SB; Yu CS; Kim JC; Kim J; Jang SJ; Kim TW
    Clin Colorectal Cancer; 2018 Dec; 17(4):e679-e685. PubMed ID: 30077598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer.
    Liu H; Yin H; Li J; Dong X; Zheng H; Zhang T; Yin Q; Zhang Z; Lu M; Zhang H; Wang D
    J Magn Reson Imaging; 2022 Dec; 56(6):1659-1668. PubMed ID: 35587946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based multi-parametric magnetic resonance imaging (mp-MRI) nomogram for predicting Ki-67 expression in rectal cancer.
    Wu S; Wang N; Ao W; Hu J; Xu W; Mao G
    Abdom Radiol (NY); 2024 Sep; 49(9):3003-3014. PubMed ID: 38489038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images.
    Zhang Y; Chen S; Wang Y; Li J; Xu K; Chen J; Zhao J
    J Cancer Res Clin Oncol; 2023 Sep; 149(11):8877-8888. PubMed ID: 37150803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive Value of Metabolic Parameters Derived From
    Liu H; Ye Z; Yang T; Xie H; Duan T; Li M; Wu M; Song B
    Front Immunol; 2021; 12():724464. PubMed ID: 34512653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics Analysis of Multi-Sequence MR Images For Predicting Microsatellite Instability Status Preoperatively in Rectal Cancer.
    Li Z; Dai H; Liu Y; Pan F; Yang Y; Zhang M
    Front Oncol; 2021; 11():697497. PubMed ID: 34307164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prognostic value of microsatellite instability in sporadic locally advanced rectal cancer following neoadjuvant radiotherapy.
    Du C; Zhao J; Xue W; Dou F; Gu J
    Histopathology; 2013 Apr; 62(5):723-30. PubMed ID: 23425253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.
    Muti HS; Heij LR; Keller G; Kohlruss M; Langer R; Dislich B; Cheong JH; Kim YW; Kim H; Kook MC; Cunningham D; Allum WH; Langley RE; Nankivell MG; Quirke P; Hayden JD; West NP; Irvine AJ; Yoshikawa T; Oshima T; Huss R; Grosser B; Roviello F; d'Ignazio A; Quaas A; Alakus H; Tan X; Pearson AT; Luedde T; Ebert MP; Jäger D; Trautwein C; Gaisa NT; Grabsch HI; Kather JN
    Lancet Digit Health; 2021 Oct; 3(10):e654-e664. PubMed ID: 34417147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.