These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33963781)

  • 1. Single-Crystalline Silicon Frameworks: A New Platform for Transparent Flexible Optoelectronics.
    Zhang BC; Shi YH; Mao J; Huang SY; Shao ZB; Zheng CJ; Jie JS; Zhang XH
    Adv Mater; 2021 Jun; 33(24):e2008171. PubMed ID: 33963781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Large-Scale High-Mobility Flexible Transparent Zinc Oxide Single Crystal Wafers.
    Chen YC; Tu YH; Chen LW; Lai YH; Tsai MF; Lin YX; Lai HC; Chiang CY; Liu HJ; Pan HC; Yang TY; Zhang D; Seidel J; Wu JM; Chueh YL; Chang WH; Ku CS; Chen SH; Chang L; Chu YH
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18991-18998. PubMed ID: 33851818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications.
    Hossain M; Kumar GS; Barimar Prabhava SN; Sheerin ED; McCloskey D; Acharya S; Rao KDM; Boland JJ
    ACS Nano; 2018 May; 12(5):4727-4735. PubMed ID: 29726674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanowire-based transparent conductors for flexible electronics and optoelectronics.
    Xue J; Song J; Dong Y; Xu L; Li J; Zeng H
    Sci Bull (Beijing); 2017 Jan; 62(2):143-156. PubMed ID: 36659486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring.
    Zhang BC; Wang H; Zhao Y; Li F; Ou XM; Sun BQ; Zhang XH
    Nanoscale; 2016 Jan; 8(4):2123-8. PubMed ID: 26725832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.
    Nomura K; Ohta H; Takagi A; Kamiya T; Hirano M; Hosono H
    Nature; 2004 Nov; 432(7016):488-92. PubMed ID: 15565150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can we build a truly high performance computer which is flexible and transparent?
    Rojas JP; Torres Sevilla GA; Hussain MM
    Sci Rep; 2013; 3():2609. PubMed ID: 24018904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Area Exfoliated Lead-Free Perovskite-Derivative Single-Crystalline Membrane for Flexible Low-Defect Photodetectors.
    Zhang W; Sui Y; Kou B; Peng Y; Wu Z; Luo J
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9141-9149. PubMed ID: 31755687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxide Heteroepitaxy for Flexible Optoelectronics.
    Bitla Y; Chen C; Lee HC; Do TH; Ma CH; Qui LV; Huang CW; Wu WW; Chang L; Chiu PW; Chu YH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32401-32407. PubMed ID: 27933841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.
    Xu JL; Liu YH; Gao X; Sun Y; Shen S; Cai X; Chen L; Wang SD
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27649-27656. PubMed ID: 28758739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics.
    Lee JY; Shin J; Kim K; Ju JE; Dutta A; Kim TS; Cho YU; Kim T; Hu L; Min WK; Jung HS; Park YS; Won SM; Yeo WH; Moon J; Khang DY; Kim HJ; Ahn JH; Cheng H; Yu KJ; Rogers JA
    Small; 2023 Sep; 19(39):e2302597. PubMed ID: 37246255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector.
    Xu R; Min L; Qi Z; Zhang X; Jian J; Ji Y; Qian F; Fan J; Kan C; Wang H; Tian W; Li L; Li W; Yang H
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16462-16468. PubMed ID: 32192331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Transparent Crystalline-ITO/Ag Nanowire Hybrid Electrode with High Stability for Organic Optoelectronics.
    Im HG; Jang J; Jeon Y; Noh J; Jin J; Lee JY; Bae BS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56462-56469. PubMed ID: 33258583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable Transparent Substrate Based on Edible Starch-Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics.
    Miao J; Liu H; Li Y; Zhang X
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23037-23047. PubMed ID: 29905073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Hybrid Structures for Integrated and Flexible Optoelectronics.
    Chen X; Shehzad K; Gao L; Long M; Guo H; Qin S; Wang X; Wang F; Shi Y; Hu W; Xu Y; Wang X
    Adv Mater; 2020 Jul; 32(27):e1902039. PubMed ID: 31282020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous Integration of Carbon-Nanotube-Graphene for High-Performance, Flexible, and Transparent Photodetectors.
    Pyo S; Kim W; Jung HI; Choi J; Kim J
    Small; 2017 Jul; 13(27):. PubMed ID: 28544754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics.
    Song J; Li J; Xu J; Zeng H
    Nano Lett; 2014 Nov; 14(11):6298-305. PubMed ID: 25302453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Durable and Flexible Transparent Electrode for Flexible Optoelectronic Applications.
    Jin SW; Lee YH; Yeom KM; Yun J; Park H; Jeong YR; Hong SY; Lee G; Oh SY; Lee JH; Noh JH; Ha JS
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30706-30715. PubMed ID: 30113812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible transparent and free-standing silicon nanowires paper.
    Pang C; Cui H; Yang G; Wang C
    Nano Lett; 2013 Oct; 13(10):4708-14. PubMed ID: 23984843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Device Applications of 2D Semiconductors.
    Gao L
    Small; 2017 Sep; 13(35):. PubMed ID: 28464480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.