BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 33963862)

  • 1. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.
    St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA
    Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.
    Lin JC; Thirumalai D
    J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy.
    Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism.
    Neupane K; Yu H; Foster DA; Wang F; Woodside MT
    Nucleic Acids Res; 2011 Sep; 39(17):7677-87. PubMed ID: 21653559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of the adenine riboswitch.
    Lemay JF; Penedo JC; Tremblay R; Lilley DM; Lafontaine DA
    Chem Biol; 2006 Aug; 13(8):857-68. PubMed ID: 16931335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.
    Ding J; Swain M; Yu P; Stagno JR; Wang YX
    J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding through a Linear Transition State Enables Fast Temperature Adaptation of a Translational Riboswitch.
    Fürtig B; Oberhauser EM; Zetzsche H; Klötzner DP; Heckel A; Schwalbe H
    Biochemistry; 2020 Mar; 59(10):1081-1086. PubMed ID: 32134253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboswitch structure: an internal residue mimicking the purine ligand.
    Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P
    Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch.
    Wu L; Liu Z; Liu Y
    RNA Biol; 2021 Nov; 18(11):2007-2015. PubMed ID: 33573442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation.
    Bao L; Xiao Y
    Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.