These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 339640)
1. Relations between ion shifting, ATP depletion and lactic acid formation in human red cells during moderate calcium loading using the ionophore A 23187. Till U; Petermann H; Wenz I; Frunder H Acta Biol Med Ger; 1977; 36(3-4):597-610. PubMed ID: 339640 [TBL] [Abstract][Full Text] [Related]
2. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187. Campbell AK; Siddle K Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033 [TBL] [Abstract][Full Text] [Related]
3. The influence of extracellular magnesium on cell damage induced by ATP depletion in human fibroblasts. Kristensen SR; Hørder M Scand J Clin Lab Invest; 1991 Feb; 51(1):11-5. PubMed ID: 1850545 [TBL] [Abstract][Full Text] [Related]
4. Stimulation by calcium of glucose uptake and lactate production in pigeon erythrocytes. Lucas M Biomed Biochim Acta; 1987; 46(2-3):S253-7. PubMed ID: 3109406 [TBL] [Abstract][Full Text] [Related]
5. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells. Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714 [TBL] [Abstract][Full Text] [Related]
6. Studies on the differential morphological alterations in human and goat erythrocytes against ATP depletion and Ca(2+)-induced stresses. Zaidi A; Khan MT; Mirza M; Ahmad I; Saleemuddin M Biochem Mol Biol Int; 1995 Oct; 37(3):517-26. PubMed ID: 8595392 [TBL] [Abstract][Full Text] [Related]
7. Depletion of red cell ATP by incubation with 2-deoxyglucose. Kondo T; Beutler E J Lab Clin Med; 1979 Oct; 94(4):617-23. PubMed ID: 39106 [TBL] [Abstract][Full Text] [Related]
8. The effects of calcium on glycolysis and ATP concentration in complete and membrane-poor hemolyzates of human erythrocytes. Brox D; Petermann B; Frunder H Acta Biol Med Ger; 1977; 36(5-6):611-9. PubMed ID: 414494 [TBL] [Abstract][Full Text] [Related]
9. [Mg2+,ATP-dependent transport of Ca2+ in the endoplasmic reticulum of myometrial cells]. Kosterin SA; Babich LG; Shlykov SG; Rovenets NA Biokhimiia; 1996 Jan; 61(1):73-81. PubMed ID: 8679780 [TBL] [Abstract][Full Text] [Related]
10. Red cell response to A23187 and valinomycine in Duchenne muscular dystrophy. Szibor R; Till U; Lösche W; Steinbicker V Acta Biol Med Ger; 1981; 40(9):1187-90. PubMed ID: 6803478 [TBL] [Abstract][Full Text] [Related]
11. Factors that limit whole cell deformability in erythrocytes after calcium loading and ATP depletion. Mohandas N; Clark MR; Feo C; Jacobs MS; Shohet SB Prog Clin Biol Res; 1981; 55():423-37. PubMed ID: 6794036 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes. Brown AM Biochim Biophys Acta; 1979 Jun; 554(1):195-203. PubMed ID: 378257 [TBL] [Abstract][Full Text] [Related]
13. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Sarkadi B; Szász I; Gerlóczy A; Gárdos G Biochim Biophys Acta; 1977 Jan; 464(1):93-107. PubMed ID: 137747 [TBL] [Abstract][Full Text] [Related]
14. A23187 and red cells: changes in deformability, K+, Mg-2+, Ca-2+ and ATP. Kirkpatrick FH; Hillman DG; La Celle PL Experientia; 1975 Jun; 31(6):653-4. PubMed ID: 1095389 [No Abstract] [Full Text] [Related]
15. Passive permeability of human red blood cells to calcium. McNamara MK; Wiley JS Am J Physiol; 1986 Jan; 250(1 Pt 1):C26-31. PubMed ID: 3942205 [TBL] [Abstract][Full Text] [Related]
16. The effects of ionophore A23187 on erythrocytes. Relationship of atp and 2,3-diphosphoglycerate to calcium-binding capacity. Edmondson JW; Li TK Biochim Biophys Acta; 1976 Aug; 443(1):106-13. PubMed ID: 782543 [TBL] [Abstract][Full Text] [Related]
17. Calcium dependent ATP losses in intact red blood cells without cellular accumulations of calcium. Plishker GA; Gitelman HJ J Membr Biol; 1977 Aug; 35(4):309-18. PubMed ID: 142838 [TBL] [Abstract][Full Text] [Related]
18. Net ATP synthesis by running the red cell calcium pump backwards. Wüthrich A; Schatzmann HJ; Romero P Experientia; 1979 Dec; 35(12):1589-90. PubMed ID: 391586 [TBL] [Abstract][Full Text] [Related]
19. Reversal of the calcium pump in human red cells. Rossi JP; Garrahan PJ; Rega AF J Membr Biol; 1978 Dec; 44(1):37-46. PubMed ID: 153405 [TBL] [Abstract][Full Text] [Related]
20. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Tiffert T; Garcia-Sancho J; Lew VL Biochim Biophys Acta; 1984 Jun; 773(1):143-56. PubMed ID: 6428450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]