These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33964127)

  • 1. CLEP: a hybrid data- and knowledge-driven framework for generating patient representations.
    Bharadhwaj VS; Ali M; Birkenbihl C; Mubeen S; Lehmann J; Hofmann-Apitius M; Hoyt CT; Domingo-Fernández D
    Bioinformatics; 2021 Oct; 37(19):3311-3318. PubMed ID: 33964127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STonKGs: a sophisticated transformer trained on biomedical text and knowledge graphs.
    Balabin H; Hoyt CT; Birkenbihl C; Gyori BM; Bachman J; Kodamullil AT; Plöger PG; Hofmann-Apitius M; Domingo-Fernández D
    Bioinformatics; 2022 Mar; 38(6):1648-1656. PubMed ID: 34986221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioKEEN: a library for learning and evaluating biological knowledge graph embeddings.
    Ali M; Hoyt CT; Domingo-Fernández D; Lehmann J; Jabeen H
    Bioinformatics; 2019 Sep; 35(18):3538-3540. PubMed ID: 30768158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MultiPaths: a Python framework for analyzing multi-layer biological networks using diffusion algorithms.
    Marín-Llaó J; Mubeen S; Perera-Lluna A; Hofmann-Apitius M; Picart-Armada S; Domingo-Fernández D
    Bioinformatics; 2021 Apr; 37(1):137-139. PubMed ID: 33367476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mOWL: Python library for machine learning with biomedical ontologies.
    Zhapa-Camacho F; Kulmanov M; Hoehndorf R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36534832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PecanPy: a fast, efficient and parallelized Python implementation of node2vec.
    Liu R; Krishnan A
    Bioinformatics; 2021 Oct; 37(19):3377-3379. PubMed ID: 33760066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATHENA: analysis of tumor heterogeneity from spatial omics measurements.
    Martinelli AL; Rapsomaniki MA
    Bioinformatics; 2022 May; 38(11):3151-3153. PubMed ID: 35485743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPS: automated feature selection in case-control studies using extreme pseudo-sampling.
    Shemirani R; Wenric S; Kenny E; Ambite JL
    Bioinformatics; 2021 Oct; 37(19):3372-3373. PubMed ID: 33774671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Node-degree aware edge sampling mitigates inflated classification performance in biomedical random walk-based graph representation learning.
    Cappelletti L; Rekerle L; Fontana T; Hansen P; Casiraghi E; Ravanmehr V; Mungall CJ; Yang JJ; Spranger L; Karlebach G; Caufield JH; Carmody L; Coleman B; Oprea TI; Reese J; Valentini G; Robinson PN
    Bioinform Adv; 2024; 4(1):vbae036. PubMed ID: 38577542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysing high-throughput sequencing data in Python with HTSeq 2.0.
    Putri GH; Anders S; Pyl PT; Pimanda JE; Zanini F
    Bioinformatics; 2022 May; 38(10):2943-2945. PubMed ID: 35561197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. aCLImatise: automated generation of tool definitions for bioinformatics workflows.
    Milton M; Thorne N
    Bioinformatics; 2021 Apr; 36(22-23):5556-5557. PubMed ID: 33325479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. decoupleR: ensemble of computational methods to infer biological activities from omics data.
    Badia-I-Mompel P; Vélez Santiago J; Braunger J; Geiss C; Dimitrov D; Müller-Dott S; Taus P; Dugourd A; Holland CH; Ramirez Flores RO; Saez-Rodriguez J
    Bioinform Adv; 2022; 2(1):vbac016. PubMed ID: 36699385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PyBEL: a computational framework for Biological Expression Language.
    Hoyt CT; Konotopez A; Ebeling C; Wren J
    Bioinformatics; 2018 Feb; 34(4):703-704. PubMed ID: 29048466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying interactions in omics data for clinical biomarker discovery using symbolic regression.
    Christensen NJ; Demharter S; Machado M; Pedersen L; Salvatore M; Stentoft-Hansen V; Iglesias MT
    Bioinformatics; 2022 Aug; 38(15):3749-3758. PubMed ID: 35731214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.