These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3396417)

  • 1. Theophylline effect on the cerebral blood flow response to hypoxemia.
    Bowton DL; Haddon WS; Prough DS; Adair N; Alford PT; Stump DA
    Chest; 1988 Aug; 94(2):371-5. PubMed ID: 3396417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans.
    Hoiland RL; Bain AR; Tymko MM; Rieger MG; Howe CA; Willie CK; Hansen AB; Flück D; Wildfong KW; Stembridge M; Subedi P; Anholm J; Ainslie PN
    J Appl Physiol (1985); 2017 Apr; 122(4):795-808. PubMed ID: 28082335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of adenosine in CBF increases during hypoxia in young vs aged rats.
    Hoffman WE; Albrecht RF; Miletich DJ
    Stroke; 1984; 15(1):124-9. PubMed ID: 6695416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxemia, oxygen content, and the regulation of cerebral blood flow.
    Hoiland RL; Bain AR; Rieger MG; Bailey DM; Ainslie PN
    Am J Physiol Regul Integr Comp Physiol; 2016 Mar; 310(5):R398-413. PubMed ID: 26676248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep.
    Blood AB; Hunter CJ; Power GG
    J Physiol; 2003 Dec; 553(Pt 3):935-45. PubMed ID: 14500776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral blood flow and oxygen delivery during hypoxemia and hemodilution: role of arterial oxygen content.
    Todd MM; Wu B; Maktabi M; Hindman BJ; Warner DS
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H2025-31. PubMed ID: 7977834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of adenosine in regulation of cerebral blood flow: effects of theophylline during normoxia and hypoxia.
    Morii S; Ngai AC; Ko KR; Winn HR
    Am J Physiol; 1987 Jul; 253(1 Pt 2):H165-75. PubMed ID: 3037925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence against participation of V2 receptors in the increase of cerebral blood flow during hypoxemia in the rat.
    Koźniewska E; Oseka M
    Prog Brain Res; 1992; 91():59-62. PubMed ID: 1410434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of theophylline on regional cerebral blood flow responses to hypoxia in newborn piglets.
    McPhee AJ; Maxwell GM
    Pediatr Res; 1987 Jun; 21(6):573-8. PubMed ID: 3601475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia.
    Liu X; Xu D; Hall JR; Ross S; Chen S; Liu H; Mallet RT; Shi X
    J Appl Physiol (1985); 2017 Dec; 123(6):1689-1697. PubMed ID: 29074711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow during hypoxemia and hemodilution in rabbits: different roles for nitric oxide?
    Todd MM; Farrell S; Wu B
    J Cereb Blood Flow Metab; 1997 Dec; 17(12):1319-25. PubMed ID: 9397031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of adenosine on cerebral blood flow during hypoxic hypoxia in the newborn piglet.
    Laudignon N; Farri E; Beharry K; Rex J; Aranda JV
    J Appl Physiol (1985); 1990 Apr; 68(4):1534-41. PubMed ID: 2347792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of theophylline treatment on the functional hyperaemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E
    Acta Physiol Hung; 1986; 68(2):183-97. PubMed ID: 3825555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen.
    Vorstrup S; Henriksen L; Paulson OB
    J Clin Invest; 1984 Nov; 74(5):1634-9. PubMed ID: 6501565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of acute hypoxemia and hypotension on adenosine-mediated depression of evoked hippocampal synaptic transmission.
    Gervitz LM; Davies DG; Omidvar K; Fowler JC
    Exp Neurol; 2003 Aug; 182(2):507-17. PubMed ID: 12895463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of combined hypoxemia and cephalic hypotension on fetal cerebral blood flow and metabolism.
    Hohimer AR; Chao CR; Bissonnette JM
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):99-105. PubMed ID: 1984009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of the peripherally mediated from the centrally mediated influences of adenosine in the rat during systemic hypoxia.
    Thomas T; Elnazir BK; Marshall JM
    Exp Physiol; 1994 Sep; 79(5):809-22. PubMed ID: 7818867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood flow during hypoxic hypoxia with plasma-based hemoglobin at reduced hematocrit.
    Ulatowski JA; Bucci E; Razynska A; Traystman RJ; Koehler RC
    Am J Physiol; 1998 Jun; 274(6):H1933-42. PubMed ID: 9841479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of adenosine and lowered cerebral blood flow on the cerebrovascular effects of theophylline.
    Oberdörster G; Lang R; Zimmer R
    Eur J Pharmacol; 1975 Feb; 30(2):197-204. PubMed ID: 1126358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminophylline alters the core temperature response to acute hypoxemia in newborn and older guinea pigs.
    Crisanti KC; Fewell JE
    Am J Physiol; 1999 Sep; 277(3):R829-35. PubMed ID: 10484500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.