BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33964330)

  • 1. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer.
    Gao PP; Qi XW; Sun N; Sun YY; Zhang Y; Tan XN; Ding J; Han F; Zhang Y
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188562. PubMed ID: 33964330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic activity and substrate specificity of mitogen-activated protein kinase p38alpha in different phosphorylation states.
    Zhang YY; Mei ZQ; Wu JW; Wang ZX
    J Biol Chem; 2008 Sep; 283(39):26591-601. PubMed ID: 18669639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity.
    Patysheva MR; Prostakishina EA; Budnitskaya AA; Bragina OD; Kzhyshkowska JG
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling.
    Liu H; Li X; Shi Y; Ye Z; Cheng X
    Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting phosphatases: From molecule design to clinical trials.
    Guo M; Li Z; Gu M; Gu J; You Q; Wang L
    Eur J Med Chem; 2024 Jan; 264():116031. PubMed ID: 38101039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EYA4 promotes breast cancer progression and metastasis through its role in replication stress avoidance.
    de la Peña Avalos B; Tropée R; Duijf PHG; Dray E
    Mol Cancer; 2023 Sep; 22(1):158. PubMed ID: 37777742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The "VH1-like" dual-specificity protein tyrosine phosphatases.
    Martell KJ; Angelotti T; Ullrich A
    Mol Cells; 1998 Feb; 8(1):2-11. PubMed ID: 9571625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Specific Phosphatase 7 Exacerbates Dilated Cardiomyopathy, Heart Failure, and Cardiac Death by Inactivating the ERK1/2 Signaling Pathway.
    Liu J; Yin Y; Ni J; Zhang P; Li WM; Liu Z
    J Cardiovasc Transl Res; 2022 Dec; 15(6):1219-1238. PubMed ID: 35596107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Site-Specific Phosphorylation of PTEN by Using Enzyme-Catalyzed Expressed Protein Ligation.
    Henager SH; Henriquez S; Dempsey DR; Cole PA
    Chembiochem; 2020 Jan; 21(1-2):64-68. PubMed ID: 31206229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting PRL phosphatases in hematological malignancies.
    Xiao S; Chen H; Bai Y; Zhang ZY; Liu Y
    Expert Opin Ther Targets; 2024 Apr; ():1-13. PubMed ID: 38653737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy.
    Pan J; Zhou L; Zhang C; Xu Q; Sun Y
    Signal Transduct Target Ther; 2022 Jun; 7(1):177. PubMed ID: 35665742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses.
    Nazari N; Jafari F; Ghalamfarsa G; Hadinia A; Atapour A; Ahmadi M; Dolati S; Rostamzadeh D
    Immunol Cell Biol; 2021 Sep; 99(8):814-832. PubMed ID: 33988889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LncRNA ABCC6P1 promotes proliferation and migration of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway.
    Guan Y; Li Y; Yang QB; Yu J; Qiao H
    Ann Transl Med; 2021 Apr; 9(8):664. PubMed ID: 33987362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-genetic, cell cycle-dependent mechanism of platinum resistance in lung adenocarcinoma.
    Gonzalez Rajal A; Marzec KA; McCloy RA; Nobis M; Chin V; Hastings JF; Lai K; Kennerson M; Hughes WE; Vaghjiani V; Timpson P; Cain JE; Watkins DN; Croucher DR; Burgess A
    Elife; 2021 May; 10():. PubMed ID: 33983115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts.
    Storchova R; Burdova K; Palek M; Medema RH; Macurek L
    FEBS J; 2021 Oct; 288(20):6035-6051. PubMed ID: 33982878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the antimetastatic and anticancer activities of morin in HER2‑overexpressing breast cancer SK‑BR‑3 cells.
    Lee KS; Lee MG; Nam KS
    Oncol Rep; 2021 Jul; 46(1):. PubMed ID: 33982761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRIM14 regulates melanoma malignancy via PTEN/PI3K/AKT and STAT3 pathways.
    Chen J; Huang L; Quan J; Xiang D
    Aging (Albany NY); 2021 May; 13(9):13225-13238. PubMed ID: 33982666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity.
    Li X; Pan J; Wei Y; Ni L; Xu B; Deng Y; Yang T; Liu W
    Neurotoxicology; 2021 Jul; 85():33-46. PubMed ID: 33964343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance.
    Zandi Z; Kashani B; Alishahi Z; Pourbagheri-Sigaroodi A; Esmaeili F; Ghaffari SH; Bashash D; Momeny M
    J Cancer Res Clin Oncol; 2022 Jan; 148(1):57-70. PubMed ID: 34981193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a Prognostic Risk Prediction Model for Obesity Combined With Breast Cancer.
    Sun N; Ma D; Gao P; Li Y; Yan Z; Peng Z; Han F; Zhang Y; Qi X
    Front Endocrinol (Lausanne); 2021; 12():712513. PubMed ID: 34566889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.