BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33964461)

  • 1. Decoding the microstructural properties of white matter using realistic models.
    Hédouin R; Metere R; Chan KS; Licht C; Mollink J; van Walsum AC; Marques JP
    Neuroimage; 2021 Aug; 237():118138. PubMed ID: 33964461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of realistic geometries on the susceptibility-weighted MR signal in white matter.
    Xu T; Foxley S; Kleinnijenhuis M; Chen WC; Miller KL
    Magn Reson Med; 2018 Jan; 79(1):489-500. PubMed ID: 28394030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T.
    Thapaliya K; Vegh V; Bollmann S; Barth M
    Neuroimage; 2018 Nov; 182():407-416. PubMed ID: 29183776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity analysis of effective transverse shear viscoelastic and diffusional properties of myelinated white matter.
    Sullivan DJ; Wu X; Gallo NR; Naughton NM; Georgiadis JG; Pelegri AA
    Phys Med Biol; 2021 Jan; 66(3):035027. PubMed ID: 32599577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
    Nunes D; Cruz TL; Jespersen SN; Shemesh N
    J Magn Reson; 2017 Apr; 277():117-130. PubMed ID: 28282586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI.
    De Santis S; Granberg T; Ouellette R; Treaba CA; Herranz E; Fan Q; Mainero C; Toschi N
    Neuroimage Clin; 2019; 22():101699. PubMed ID: 30739842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting gradient-echo frequency evolution: Probing white matter microstructure and extracting bulk susceptibility-induced frequency for quantitative susceptibility mapping.
    Chen L; Shin HG; van Zijl PCM; Li X
    Magn Reson Med; 2024 Apr; 91(4):1676-1693. PubMed ID: 38102838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T
    Veraart J; Novikov DS; Fieremans E
    Neuroimage; 2018 Nov; 182():360-369. PubMed ID: 28935239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysically motivated efficient estimation of the spatially isotropic
    Papazoglou S; Streubel T; Ashtarayeh M; Pine KJ; Edwards LJ; Brammerloh M; Kirilina E; Morawski M; Jäger C; Geyer S; Callaghan MF; Weiskopf N; Mohammadi S
    Magn Reson Med; 2019 Nov; 82(5):1804-1811. PubMed ID: 31293007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging white matter microstructure with gradient-echo phase imaging: Is ex vivo imaging with formalin-fixed tissue a good approximation of the in vivo brain?
    Chan KS; Hédouin R; Mollink J; Schulz J; van Cappellen van Walsum AM; Marques JP
    Magn Reson Med; 2022 Jul; 88(1):380-390. PubMed ID: 35344591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B0 -orientation dependent magnetic susceptibility-induced white matter contrast in the human brainstem at 11.7T.
    Aggarwal M; Kageyama Y; Li X; van Zijl PC
    Magn Reson Med; 2016 Jun; 75(6):2455-63. PubMed ID: 27018784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural correlates of
    Kolbe SC; Syeda W; Blunck Y; Glarin R; Law M; Johnston LA; Cleary JO
    Neuroimage; 2020 May; 211():116609. PubMed ID: 32044439
    [No Abstract]   [Full Text] [Related]  

  • 13. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.
    Chen Y; Liu S; Wang Y; Kang Y; Haacke EM
    Magn Reson Imaging; 2018 Feb; 46():130-139. PubMed ID: 29056394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vivo study of the orientation-dependent and independent components of transverse relaxation rates in white matter.
    Gil R; Khabipova D; Zwiers M; Hilbert T; Kober T; Marques JP
    NMR Biomed; 2016 Dec; 29(12):1780-1790. PubMed ID: 27809376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of T
    Lee J; Nam Y; Choi JY; Kim EY; Oh SH; Kim DH
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27060968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of apparent axon density and orientation dispersion in the white matter of youth born with congenital heart disease.
    Easson K; Rohlicek CV; Houde JC; Gilbert G; Saint-Martin C; Fontes K; Majnemer A; Marelli A; Wintermark P; Descoteaux M; Brossard-Racine M
    Neuroimage; 2020 Jan; 205():116255. PubMed ID: 31605826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MR susceptibility contrast imaging using a 2D simultaneous multi-slice gradient-echo sequence at 7T.
    Bian W; Kerr AB; Tranvinh E; Parivash S; Zahneisen B; Han MH; Lock CB; Goubran M; Zhu K; Rutt BK; Zeineh MM
    PLoS One; 2019; 14(7):e0219705. PubMed ID: 31314813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient echo based fiber orientation mapping using R2* and frequency difference measurements.
    Wharton S; Bowtell R
    Neuroimage; 2013 Dec; 83():1011-23. PubMed ID: 23906549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole brain g-ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI).
    Jung W; Lee J; Shin HG; Nam Y; Zhang H; Oh SH; Lee J
    Neuroimage; 2018 Nov; 182():379-388. PubMed ID: 28962901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harmonic viscoelastic response of 3D histology-informed white matter model.
    Wu X; Georgiadis JG; Pelegri AA
    Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.