These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33964599)

  • 1. Efficient conversion of hemicellulose sugars from spent sulfite liquor into optically pure L-lactic acid by Enterococcus mundtii.
    Hoheneder R; Fitz E; Bischof RH; Russmayer H; Ferrero P; Peacock S; Sauer M
    Bioresour Technol; 2021 Aug; 333():125215. PubMed ID: 33964599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():667-85. PubMed ID: 8323269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression.
    Abdel-Rahman MA; Xiao Y; Tashiro Y; Wang Y; Zendo T; Sakai K; Sonomoto K
    J Biosci Bioeng; 2015 Feb; 119(2):153-8. PubMed ID: 25280397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using
    Wang Y; Chan KL; Abdel-Rahman MA; Sonomoto K; Leu SY
    Biotechnol Biofuels; 2020; 13():112. PubMed ID: 32607127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.
    Walton SL; Bischoff KM; van Heiningen AR; van Walsum GP
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):823-30. PubMed ID: 20454831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae.
    Novy V; Krahulec S; Longus K; Klimacek M; Nidetzky B
    Bioresour Technol; 2013 Feb; 130():439-48. PubMed ID: 23313691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch and repeated batch production of L (+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor.
    Wee YJ; Yun JS; Kim D; Ryu HW
    J Ind Microbiol Biotechnol; 2006 Jun; 33(6):431-5. PubMed ID: 16453121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. l-Lactate oxidase-mediated removal of l-lactic acid derived from fermentation medium for the production of optically pure D-lactic acid.
    Okano K; Sato Y; Hama S; Tanaka T; Noda H; Kondo A; Honda K
    Biotechnol J; 2022 Apr; 17(4):e2100331. PubMed ID: 35076998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor.
    Helle SS; Murray A; Lam J; Cameron DR; Duff SJ
    Bioresour Technol; 2004 Apr; 92(2):163-71. PubMed ID: 14693449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acid production from co-fermentation of food waste and spent mushroom substance with Aspergillus niger cellulase.
    Ma X; Gao M; Wang N; Liu S; Wang Q; Sun X
    Bioresour Technol; 2021 Oct; 337():125365. PubMed ID: 34102515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-carbon loss long-term continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50.
    Abdel-Rahman MA; Tan J; Tashiro Y; Zendo T; Sakai K; Sonomoto K
    Biotechnol Bioeng; 2020 Jun; 117(6):1673-1683. PubMed ID: 32086810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid.
    Abdel-Rahman MA; Tashiro Y; Zendo T; Shibata K; Sonomoto K
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1039-49. PubMed ID: 21061005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose.
    Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M
    PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae.
    Taherzadeh MJ; Fox M; Hjorth H; Edebo L
    Bioresour Technol; 2003 Jul; 88(3):167-77. PubMed ID: 12618037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.
    Murakami N; Oba M; Iwamoto M; Tashiro Y; Noguchi T; Bonkohara K; Abdel-Rahman MA; Zendo T; Shimoda M; Sakai K; Sonomoto K
    J Biosci Bioeng; 2016 Jan; 121(1):89-95. PubMed ID: 26168904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25.
    Abdel-Rahman MA; Tashiro Y; Zendo T; Hanada K; Shibata K; Sonomoto K
    Appl Environ Microbiol; 2011 Mar; 77(5):1892-5. PubMed ID: 21193678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion.
    Moldes AB; Bustos G; Torrado A; Domínguez JM
    Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.
    Neu AK; Pleissner D; Mehlmann K; Schneider R; Puerta-Quintero GI; Venus J
    Bioresour Technol; 2016 Jul; 211():398-405. PubMed ID: 27035470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.