These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33964689)
1. Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis. Wu S; Todo M; Umebayashi D; Yamamoto Y Clin Biomech (Bristol, Avon); 2021 May; 85():105365. PubMed ID: 33964689 [TBL] [Abstract][Full Text] [Related]
2. Prediction of incident vertebral fracture using CT-based finite element analysis. Allaire BT; Lu D; Johannesdottir F; Kopperdahl D; Keaveny TM; Jarraya M; Guermazi A; Bredella MA; Samelson EJ; Kiel DP; Anderson DE; Demissie S; Bouxsein ML Osteoporos Int; 2019 Feb; 30(2):323-331. PubMed ID: 30306225 [TBL] [Abstract][Full Text] [Related]
3. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Crawford RP; Cann CE; Keaveny TM Bone; 2003 Oct; 33(4):744-50. PubMed ID: 14555280 [TBL] [Abstract][Full Text] [Related]
4. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. Wang X; Sanyal A; Cawthon PM; Palermo L; Jekir M; Christensen J; Ensrud KE; Cummings SR; Orwoll E; Black DM; ; Keaveny TM J Bone Miner Res; 2012 Apr; 27(4):808-16. PubMed ID: 22190331 [TBL] [Abstract][Full Text] [Related]
5. Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study. Anitha DP; Baum T; Kirschke JS; Subburaj K Spine J; 2020 Apr; 20(4):665-671. PubMed ID: 31841703 [TBL] [Abstract][Full Text] [Related]
6. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120 [TBL] [Abstract][Full Text] [Related]
7. Discordance between Prevalent Vertebral Fracture and Vertebral Strength Estimated by the Finite Element Method Based on Quantitative Computed Tomography in Patients with Type 2 Diabetes Mellitus. Kiyohara N; Yamamoto M; Sugimoto T PLoS One; 2015; 10(12):e0144496. PubMed ID: 26642210 [TBL] [Abstract][Full Text] [Related]
8. Experimental testing and biomechanical CT analysis of Chinese cadaveric vertebrae with different modeling approaches. Wei Y; Feng W; Li G; Li Z; Liu Z; Cheng X; Yang H Med Eng Phys; 2021 Jul; 93():8-16. PubMed ID: 34154778 [TBL] [Abstract][Full Text] [Related]
9. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078 [TBL] [Abstract][Full Text] [Related]
10. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Graeff C; Marin F; Petto H; Kayser O; Reisinger A; Peña J; Zysset P; Glüer CC Bone; 2013 Feb; 52(2):568-77. PubMed ID: 23149277 [TBL] [Abstract][Full Text] [Related]
11. Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method. Imai K J Bone Miner Metab; 2011 Nov; 29(6):645-51. PubMed ID: 21667358 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength. Lee CH; Landham PR; Eastell R; Adams MA; Dolan P; Yang L Proc Inst Mech Eng H; 2017 Sep; 231(9):821-830. PubMed ID: 28478734 [TBL] [Abstract][Full Text] [Related]
14. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Homminga J; Weinans H; Gowin W; Felsenberg D; Huiskes R Spine (Phila Pa 1976); 2001 Jul; 26(14):1555-61. PubMed ID: 11462085 [TBL] [Abstract][Full Text] [Related]
15. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Dall'Ara E; Pahr D; Varga P; Kainberger F; Zysset P Osteoporos Int; 2012 Feb; 23(2):563-72. PubMed ID: 21344244 [TBL] [Abstract][Full Text] [Related]
16. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Matsumoto T; Ohnishi I; Bessho M; Imai K; Ohashi S; Nakamura K Spine (Phila Pa 1976); 2009 Jun; 34(14):1464-9. PubMed ID: 19525837 [TBL] [Abstract][Full Text] [Related]
17. Finite element modeling of the human thoracolumbar spine. Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762 [TBL] [Abstract][Full Text] [Related]
18. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone's tissue and structure. Stadelmann MA; Schenk DE; Maquer G; Lenherr C; Buck FM; Bosshardt DD; Hoppe S; Theumann N; Alkalay RN; Zysset PK Bone; 2020 Dec; 141():115598. PubMed ID: 32829037 [TBL] [Abstract][Full Text] [Related]
19. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains. Hosseini HS; Clouthier AL; Zysset PK J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24384581 [TBL] [Abstract][Full Text] [Related]
20. An in silico parametric model of vertebrae trabecular bone based on density and microstructural parameters to assess risk of fracture in osteoporosis. Amjadi Kashani MR; Nikkhoo M; Khalaf K; Firoozbakhsh K; Arjmand N; Razmjoo A; Parnianpour M Proc Inst Mech Eng H; 2014 Dec; 228(12):1281-95. PubMed ID: 25515229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]