These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
938 related articles for article (PubMed ID: 33964886)
1. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification. Otálora S; Marini N; Müller H; Atzori M BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886 [TBL] [Abstract][Full Text] [Related]
2. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
3. Weakly supervised joint whole-slide segmentation and classification in prostate cancer. Pati P; Jaume G; Ayadi Z; Thandiackal K; Bozorgtabar B; Gabrani M; Goksel O Med Image Anal; 2023 Oct; 89():102915. PubMed ID: 37633177 [TBL] [Abstract][Full Text] [Related]
4. Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis. Wang X; Chen H; Gan C; Lin H; Dou Q; Tsougenis E; Huang Q; Cai M; Heng PA IEEE Trans Cybern; 2020 Sep; 50(9):3950-3962. PubMed ID: 31484154 [TBL] [Abstract][Full Text] [Related]
5. Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images. Xiang J; Wang X; Wang X; Zhang J; Yang S; Yang W; Han X; Liu Y Comput Biol Med; 2023 Jan; 152():106340. PubMed ID: 36481762 [TBL] [Abstract][Full Text] [Related]
6. Masked hypergraph learning for weakly supervised histopathology whole slide image classification. Shi J; Shu T; Wu K; Jiang Z; Zheng L; Wang W; Wu H; Zheng Y Comput Methods Programs Biomed; 2024 Aug; 253():108237. PubMed ID: 38820715 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images-Role of Multiscale Decision Aggregation and Data Augmentation. Karimi D; Nir G; Fazli L; Black PC; Goldenberg L; Salcudean SE IEEE J Biomed Health Inform; 2020 May; 24(5):1413-1426. PubMed ID: 31567104 [TBL] [Abstract][Full Text] [Related]
8. The devil is in the details: a small-lesion sensitive weakly supervised learning framework for prostate cancer detection and grading. Yang Z; Wang X; Xiang J; Zhang J; Yang S; Wang X; Yang W; Li Z; Han X; Liu Y Virchows Arch; 2023 Mar; 482(3):525-538. PubMed ID: 36823229 [TBL] [Abstract][Full Text] [Related]
9. Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism. Islam NU; Zhou Z; Gehlot S; Gotway MB; Liang J Med Image Anal; 2024 Jan; 91():102988. PubMed ID: 37924750 [TBL] [Abstract][Full Text] [Related]
10. A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica. Calderon-Ramirez S; Murillo-Hernandez D; Rojas-Salazar K; Elizondo D; Yang S; Moemeni A; Molina-Cabello M Med Biol Eng Comput; 2022 Apr; 60(4):1159-1175. PubMed ID: 35239108 [TBL] [Abstract][Full Text] [Related]
11. An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Li J; Speier W; Ho KC; Sarma KV; Gertych A; Knudsen BS; Arnold CW Comput Med Imaging Graph; 2018 Nov; 69():125-133. PubMed ID: 30243216 [TBL] [Abstract][Full Text] [Related]
12. Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts. Nir G; Hor S; Karimi D; Fazli L; Skinnider BF; Tavassoli P; Turbin D; Villamil CF; Wang G; Wilson RS; Iczkowski KA; Lucia MS; Black PC; Abolmaesumi P; Goldenberg SL; Salcudean SE Med Image Anal; 2018 Dec; 50():167-180. PubMed ID: 30340027 [TBL] [Abstract][Full Text] [Related]
13. WeGleNet: A weakly-supervised convolutional neural network for the semantic segmentation of Gleason grades in prostate histology images. Silva-Rodríguez J; Colomer A; Naranjo V Comput Med Imaging Graph; 2021 Mar; 88():101846. PubMed ID: 33485056 [TBL] [Abstract][Full Text] [Related]
14. Self-Learning for Weakly Supervised Gleason Grading of Local Patterns. Silva-Rodriguez J; Colomer A; Dolz J; Naranjo V IEEE J Biomed Health Inform; 2021 Aug; 25(8):3094-3104. PubMed ID: 33621184 [TBL] [Abstract][Full Text] [Related]
15. A Weak and Semi-supervised Segmentation Method for Prostate Cancer in TRUS Images. Han S; Hwang SI; Lee HJ J Digit Imaging; 2020 Aug; 33(4):838-845. PubMed ID: 32043178 [TBL] [Abstract][Full Text] [Related]
16. Constrained-CNN losses for weakly supervised segmentation. Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541 [TBL] [Abstract][Full Text] [Related]
17. A systematic comparison of deep learning methods for Gleason grading and scoring. Dominguez-Morales JP; Duran-Lopez L; Marini N; Vicente-Diaz S; Linares-Barranco A; Atzori M; Müller H Med Image Anal; 2024 Jul; 95():103191. PubMed ID: 38728903 [TBL] [Abstract][Full Text] [Related]
18. A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations. Wu H; Niyogisubizo J; Zhao K; Meng J; Xi W; Li H; Pan Y; Wei Y Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003217 [TBL] [Abstract][Full Text] [Related]
19. Detecting and grading prostate cancer in radical prostatectomy specimens through deep learning techniques. Melo PAS; Estivallet CLN; Srougi M; Nahas WC; Leite KRM Clinics (Sao Paulo); 2021; 76():e3198. PubMed ID: 34730614 [TBL] [Abstract][Full Text] [Related]
20. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]