BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33965110)

  • 21. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening.
    Lee JM; Park DY; Yang L; Kim EJ; Ahrberg CD; Lee KB; Chung BG
    Sci Rep; 2018 Nov; 8(1):17145. PubMed ID: 30464248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers.
    Kim S; Lee K; Cha C
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect.
    Deng S; Zhu Y; Zhao X; Chen J; Tuan RS; Chan HF
    Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34587587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
    Bruns J; Egan T; Mercier P; Zustiak SP
    Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.
    Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S
    Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk.
    Kim K; Kim SH; Lee GH; Park JY
    Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Galactosylated reversible hydrogels as scaffold for HepG2 spheroid generation.
    Wu Y; Zhao Z; Guan Y; Zhang Y
    Acta Biomater; 2014 May; 10(5):1965-74. PubMed ID: 24382516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanostructure-integrated conductive microwell arrays for uniform cancer spheroid formation and electrochemical drug screening.
    Ju FN; Kim CH; Lee KH; Kim CD; Lim J; Lee T; Park CG; Kim TH
    Biosens Bioelectron; 2023 Feb; 222():115003. PubMed ID: 36525711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy.
    Li Y; Khuu N; Prince E; Tao H; Zhang N; Chen Z; Gevorkian A; McGuigan AP; Kumacheva E
    Biomacromolecules; 2021 Feb; 22(2):419-429. PubMed ID: 33136364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration.
    Kim SJ; Byun H; Lee S; Kim E; Lee GM; Huh SJ; Joo J; Shin H
    Acta Biomater; 2022 Apr; 142():60-72. PubMed ID: 35085797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV; Gaspar VM; Ferreira LP; Mano JF
    Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic Chip Fabrication for Tumor Cell 3D Culture Based on Microwell Arrays.
    Lei L
    Methods Mol Biol; 2024 May; ():. PubMed ID: 38700833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering.
    Kim EM; Lee GM; Lee S; Kim SJ; Lee D; Yoon DS; Joo J; Kong H; Park HH; Shin H
    Int J Biol Macromol; 2022 Jan; 194():903-913. PubMed ID: 34838857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-filling microwell arrays (SFMAs) for tumor spheroid formation.
    Seyfoori A; Samiei E; Jalili N; Godau B; Rahmanian M; Farahmand L; Majidzadeh-A K; Akbari M
    Lab Chip; 2018 Nov; 18(22):3516-3528. PubMed ID: 30357219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scalable Formation of Highly Viable and Functional Hepatocellular Carcinoma Spheroids in an Oxygen-Permeable Microwell Device for Anti-Tumor Drug Evaluation.
    He J; Zhou C; Xu X; Zhou Z; Danoy M; Shinohara M; Xiao W; Zhu D; Zhao X; Feng X; Mao Y; Sun W; Sakai Y; Yang H; Pang Y
    Adv Healthc Mater; 2022 Sep; 11(18):e2200863. PubMed ID: 35841538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.