These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3396551)

  • 1. Mechanical muscular power output and work during ergometer cycling at different work loads and speeds.
    Ericson MO
    Eur J Appl Physiol Occup Physiol; 1988; 57(4):382-7. PubMed ID: 3396551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power output and work in different muscle groups during ergometer cycling.
    Ericson MO; Bratt A; Nisell R; Arborelius UP; Ekholm J
    Eur J Appl Physiol Occup Physiol; 1986; 55(3):229-35. PubMed ID: 3732250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.
    Szecsi J; Straube A; Fornusek C
    Med Eng Phys; 2014 Nov; 36(11):1421-7. PubMed ID: 24924382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load moments about the hip and knee joints during ergometer cycling.
    Ericson MO; Bratt A; Nisell R; Németh G; Ekholm J
    Scand J Rehabil Med; 1986; 18(4):165-72. PubMed ID: 3810083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanics of Seated and Nonseated Cycling at Very-High-Power Output: A Joint-Level Analysis.
    Wilkinson RD; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2020 Jul; 52(7):1585-1594. PubMed ID: 31996561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibiofemoral joint forces during ergometer cycling.
    Ericson MO; Nisell R
    Am J Sports Med; 1986; 14(4):285-90. PubMed ID: 3728780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling.
    Farina D; Macaluso A; Ferguson RA; De Vito G
    J Appl Physiol (1985); 2004 Dec; 97(6):2035-41. PubMed ID: 15286050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of pedal forces during ergometer cycling.
    Ericson MO; Nisell R
    Int J Sports Med; 1988 Apr; 9(2):118-22. PubMed ID: 3384516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The forces of ankle joint structures during ergometer cycling.
    Ericson MO; Ekholm J; Svensson O; Nisell R
    Foot Ankle; 1985 Dec; 6(3):135-42. PubMed ID: 4076940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the hip-ankle synergy in short-term maximal cycling.
    Burnie L; Barratt P; Davids K; Worsfold P; Wheat J
    J Biomech; 2022 Sep; 142():111268. PubMed ID: 36030635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed.
    Lenton GK; Doyle TLA; Lloyd DG; Higgs J; Billing D; Saxby DJ
    J Biomech; 2019 Jan; 83():174-180. PubMed ID: 30527387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI; Herzog W; Leonard T
    J Biomech; 1996 Apr; 29(4):391-403. PubMed ID: 8964769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue.
    Haapala SA; Faghri PD; Adams DJ
    J Neuroeng Rehabil; 2008 Apr; 5():14. PubMed ID: 18439300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM; Gitter A; Munro C
    J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint-specific power production during submaximal and maximal cycling.
    Elmer SJ; Barratt PR; Korff T; Martin JC
    Med Sci Sports Exerc; 2011 Oct; 43(10):1940-7. PubMed ID: 21448081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patellofemoral joint forces during ergometric cycling.
    Ericson MO; Nisell R
    Phys Ther; 1987 Sep; 67(9):1365-9. PubMed ID: 3628491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between internal and external power outputs during weightlifting exercise.
    Kipp K; Harris C; Sabick MB
    J Strength Cond Res; 2013 Apr; 27(4):1025-30. PubMed ID: 22739324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.