These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33965615)
1. Engineering adipic acid metabolism in Pseudomonas putida. Ackermann YS; Li WJ; Op de Hipt L; Niehoff PJ; Casey W; Polen T; Köbbing S; Ballerstedt H; Wynands B; O'Connor K; Blank LM; Wierckx N Metab Eng; 2021 Sep; 67():29-40. PubMed ID: 33965615 [TBL] [Abstract][Full Text] [Related]
2. Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida. Ackermann YS; de Witt J; Mezzina MP; Schroth C; Polen T; Nikel PI; Wynands B; Wierckx N Microb Cell Fact; 2024 Feb; 23(1):54. PubMed ID: 38365718 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685 [TBL] [Abstract][Full Text] [Related]
4. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
5. A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440. Fonseca P; de la Peña F; Prieto MA Int J Biol Macromol; 2014 Nov; 71():14-20. PubMed ID: 24751507 [TBL] [Abstract][Full Text] [Related]
6. Integration of ARTP Mutation and Adaptive Laboratory Evolution to Reveal 1,4-Butanediol Degradation in Pseudomonas putida KT2440. Qian X; Xin K; Zhang L; Zhou J; Xu A; Dong W; Jiang M Microbiol Spectr; 2023 Jun; 11(3):e0498822. PubMed ID: 37067433 [TBL] [Abstract][Full Text] [Related]
7. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971 [TBL] [Abstract][Full Text] [Related]
8. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression. Brandenberg OF; Schubert OT; Kruglyak L Microb Cell Fact; 2022 Jun; 21(1):119. PubMed ID: 35717313 [TBL] [Abstract][Full Text] [Related]
9. Unraveling 1,4-Butanediol Metabolism in Li WJ; Narancic T; Kenny ST; Niehoff PJ; O'Connor K; Blank LM; Wierckx N Front Microbiol; 2020; 11():382. PubMed ID: 32256468 [TBL] [Abstract][Full Text] [Related]
10. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440. Yang S; Li S; Jia X J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026 [TBL] [Abstract][Full Text] [Related]
11. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Mezzina MP; Manoli MT; Prieto MA; Nikel PI Biotechnol J; 2021 Mar; 16(3):e2000165. PubMed ID: 33085217 [TBL] [Abstract][Full Text] [Related]
12. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Follonier S; Panke S; Zinn M Microb Cell Fact; 2011 Apr; 10():25. PubMed ID: 21513516 [TBL] [Abstract][Full Text] [Related]
13. Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate. de Witt J; Ernst P; Gätgens J; Noack S; Hiller D; Wynands B; Wierckx N Metab Eng; 2023 Jan; 75():205-216. PubMed ID: 36581064 [TBL] [Abstract][Full Text] [Related]
14. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Narancic T; Salvador M; Hughes GM; Beagan N; Abdulmutalib U; Kenny ST; Wu H; Saccomanno M; Um J; O'Connor KE; Jiménez JI Microb Biotechnol; 2021 Nov; 14(6):2463-2480. PubMed ID: 33404203 [TBL] [Abstract][Full Text] [Related]
15. Reconstructing ethanol oxidation pathway in Pseudomonas putida KT2440 for bio-upgrading of ethanol to biodegradable polyhydroxybutanoates. Nguyen LT; Mai DHA; Sarwar A; Lee EY Int J Biol Macromol; 2022 Dec; 222(Pt A):902-914. PubMed ID: 36174870 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Salvachúa D; Rydzak T; Auwae R; De Capite A; Black BA; Bouvier JT; Cleveland NS; Elmore JR; Huenemann JD; Katahira R; Michener WE; Peterson DJ; Rohrer H; Vardon DR; Beckham GT; Guss AM Microb Biotechnol; 2020 Jan; 13(1):290-298. PubMed ID: 31468725 [TBL] [Abstract][Full Text] [Related]
17. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495 [TBL] [Abstract][Full Text] [Related]