BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33965624)

  • 1. Mitochondria-targeted graphene for advanced cancer therapeutics.
    Tabish TA; Narayan RJ
    Acta Biomater; 2021 Jul; 129():43-56. PubMed ID: 33965624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect.
    Han C; Zhang C; Ma T; Zhang C; Luo J; Xu X; Zhao H; Chen Y; Kong L
    Acta Biomater; 2018 Sep; 77():268-281. PubMed ID: 30006311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers.
    Lu L; Kang S; Sun C; Sun C; Guo Z; Li J; Zhang T; Luo X; Liu B
    Curr Top Med Chem; 2020; 20(27):2427-2441. PubMed ID: 32842941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines.
    Rahmanian N; Eskandani M; Barar J; Omidi Y
    J Drug Target; 2017 Mar; 25(3):202-215. PubMed ID: 27646598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal cross-linked polymeric nanoparticles with dual sensitivity for combination therapy of muscle-invasive bladder cancer.
    Zhu G; Wang K; Qin H; Zhao X; Chen W; Xu L; Cao W; Guo H
    J Nanobiotechnology; 2020 Sep; 18(1):124. PubMed ID: 32887622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics.
    Liew SS; Qin X; Zhou J; Li L; Huang W; Yao SQ
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2232-2256. PubMed ID: 32128948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy.
    Li X; Zhao Y; Zhang T; Xing D
    Adv Healthc Mater; 2021 Feb; 10(3):e2001240. PubMed ID: 33236531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precisely Assembled Nanoparticles against Cisplatin Resistance via Cancer-Specific Targeting of Mitochondria and Imaging-Guided Chemo-Photothermal Therapy.
    Yang GG; Pan ZY; Zhang DY; Cao Q; Ji LN; Mao ZW
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43444-43455. PubMed ID: 32883070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria.
    Jean SR; Ahmed M; Lei EK; Wisnovsky SP; Kelley SO
    Acc Chem Res; 2016 Sep; 49(9):1893-902. PubMed ID: 27529125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology Assisted Chemotherapy for Targeted Cancer Treatment: Recent Advances and Clinical Perspectives.
    Lan HR; Wu ZQ; Zhang LH; Jin KT; Wang SB
    Curr Top Med Chem; 2020; 20(27):2442-2458. PubMed ID: 32703133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy.
    Lucherelli MA; Yu Y; Reina G; Abellán G; Miyako E; Bianco A
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):14034-14039. PubMed ID: 32314852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging insights into mitochondria-specific targeting and drug delivering strategies: Recent milestones and therapeutic implications.
    Dhanasekaran S; Venugopal D; Al-Dayan N; Ravinayagam V; Mohammed AA
    Saudi J Biol Sci; 2020 Dec; 27(12):3581-3592. PubMed ID: 33304169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Mitochondria-targeted Drugs for Cancer Therapy.
    Fialova JL; Raudenska M; Jakubek M; Kejik Z; Martasek P; Babula P; Matkowski A; Filipensky P; Masarik M
    Mini Rev Med Chem; 2021; 21(7):816-832. PubMed ID: 33213355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles and targeted drug delivery in cancer therapy.
    Bahrami B; Hojjat-Farsangi M; Mohammadi H; Anvari E; Ghalamfarsa G; Yousefi M; Jadidi-Niaragh F
    Immunol Lett; 2017 Oct; 190():64-83. PubMed ID: 28760499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actively Targeted Nanoparticles for Drug Delivery to Tumor.
    Bi Y; Hao F; Yan G; Teng L; Lee RJ; Xie J
    Curr Drug Metab; 2016; 17(8):763-782. PubMed ID: 27335116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy.
    Dong L; Gopalan V; Holland O; Neuzil J
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells.
    Sundaramoorthy P; Ramasamy T; Mishra SK; Jeong KY; Yong CS; Kim JO; Kim HM
    Acta Biomater; 2016 Sep; 42():220-231. PubMed ID: 27395829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents.
    Taghipour-Sabzevar V; Sharifi T; Moghaddam MM
    Ther Deliv; 2019 Aug; 10(8):527-550. PubMed ID: 31496433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.