These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33966225)
1. Potential Biomarker for Triple-Negative Breast Cancer Invasiveness by Optical Redox Imaging. Feng M; Xu HN; Jiang J; Li LZ Adv Exp Med Biol; 2021; 1269():247-251. PubMed ID: 33966225 [TBL] [Abstract][Full Text] [Related]
2. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells. Wen Y; Xu HN; Privette Vinnedge L; Feng M; Li LZ Mol Imaging Biol; 2019 Jun; 21(3):410-416. PubMed ID: 30758703 [TBL] [Abstract][Full Text] [Related]
3. Optical Redox Imaging Differentiates Triple-Negative Breast Cancer Subtypes. Jiang J; Feng M; Jacob A; Li LZ; Xu HN Adv Exp Med Biol; 2021; 1269():253-258. PubMed ID: 33966226 [TBL] [Abstract][Full Text] [Related]
4. Optical Redox Imaging Is Responsive to TGFβ Receptor Signalling in Triple-Negative Breast Cancer Cells. Xu HN; Jacob A; Li LZ Adv Exp Med Biol; 2022; 1395():269-274. PubMed ID: 36527648 [TBL] [Abstract][Full Text] [Related]
5. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios. Sun N; Xu HN; Luo Q; Li LZ Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133 [TBL] [Abstract][Full Text] [Related]
6. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells. Podsednik A; Jiang J; Jacob A; Li LZ; Xu HN Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070254 [TBL] [Abstract][Full Text] [Related]
7. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer. Lin Z; Xu HN; Wang Y; Floros J; Li LZ Adv Exp Med Biol; 2018; 1072():177-181. PubMed ID: 30178342 [TBL] [Abstract][Full Text] [Related]
8. Quantitative mitochondrial redox imaging of breast cancer metastatic potential. Xu HN; Nioka S; Glickson JD; Chance B; Li LZ J Biomed Opt; 2010; 15(3):036010. PubMed ID: 20615012 [TBL] [Abstract][Full Text] [Related]
9. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512 [TBL] [Abstract][Full Text] [Related]
11. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State. Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219 [TBL] [Abstract][Full Text] [Related]
12. Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging. Xu HN; Zheng G; Tchou J; Nioka S; Li LZ Springerplus; 2013 Dec; 2(1):73. PubMed ID: 23543813 [TBL] [Abstract][Full Text] [Related]
13. Quantitative Optical Redox Imaging of Melanoma Xenografts with Different Metastatic Potentials. Peng A; Xu HN; Moon L; Zhang P; Li LZ Cancers (Basel); 2024 Apr; 16(9):. PubMed ID: 38730620 [TBL] [Abstract][Full Text] [Related]
14. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Alhallak K; Rebello LG; Muldoon TJ; Quinn KP; Rajaram N Biomed Opt Express; 2016 Nov; 7(11):4364-4374. PubMed ID: 27895979 [TBL] [Abstract][Full Text] [Related]
15. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications. Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434 [TBL] [Abstract][Full Text] [Related]
16. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio. Jacob A; Xu HN; Stout AL; Li LZ J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35945669 [TBL] [Abstract][Full Text] [Related]
17. USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Qu Q; Mao Y; Xiao G; Fei X; Wang J; Zhang Y; Liu J; Cheng G; Chen X; Wang J; Shen K Tumour Biol; 2015 Jul; 36(7):5415-23. PubMed ID: 25687182 [TBL] [Abstract][Full Text] [Related]
18. Excellent effects and possible mechanisms of action of a new antibody-drug conjugate against EGFR-positive triple-negative breast cancer. Zhou DD; Bai WQ; Zhai XT; Sun LP; Zhen YS; Li ZR; Miao QF Mil Med Res; 2021 Dec; 8(1):63. PubMed ID: 34879870 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive Classification of Human Triple Negative Breast Cancer by PET Imaging with GRP78-Targeted Molecular Probe [ Zhao H; Meng H; Wen J; Wang C; Liu J; Huang G Mol Imaging Biol; 2020 Jun; 22(3):772-779. PubMed ID: 31452065 [TBL] [Abstract][Full Text] [Related]
20. Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Gaitan B; Inglut C; Kanniyappan U; Xu HN; Conant EF; Frankle L; Li LZ; Chen Y; Huang HC Metabolites; 2022 Nov; 12(11):. PubMed ID: 36422237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]