BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33966226)

  • 1. Optical Redox Imaging Differentiates Triple-Negative Breast Cancer Subtypes.
    Jiang J; Feng M; Jacob A; Li LZ; Xu HN
    Adv Exp Med Biol; 2021; 1269():253-258. PubMed ID: 33966226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Biomarker for Triple-Negative Breast Cancer Invasiveness by Optical Redox Imaging.
    Feng M; Xu HN; Jiang J; Li LZ
    Adv Exp Med Biol; 2021; 1269():247-251. PubMed ID: 33966225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Redox Imaging Is Responsive to TGFβ Receptor Signalling in Triple-Negative Breast Cancer Cells.
    Xu HN; Jacob A; Li LZ
    Adv Exp Med Biol; 2022; 1395():269-274. PubMed ID: 36527648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells.
    Wen Y; Xu HN; Privette Vinnedge L; Feng M; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):410-416. PubMed ID: 30758703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.
    Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N
    Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio.
    Jacob A; Xu HN; Stout AL; Li LZ
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35945669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells.
    Podsednik A; Jiang J; Jacob A; Li LZ; Xu HN
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free metabolic imaging for sensitive and robust monitoring of anti-CD47 immunotherapy response in triple-negative breast cancer.
    Yang M; Mahanty A; Jin C; Wong ANN; Yoo JS
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36096527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Redox Imaging of Lonidamine Treatment Response of Melanoma Cells and Xenografts.
    Xu HN; Feng M; Nath K; Nelson D; Roman J; Zhao H; Lin Z; Glickson J; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):426-435. PubMed ID: 30151646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information.
    Xu HN; Zhao H; Chellappa K; Davis JG; Nioka S; Baur JA; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):417-425. PubMed ID: 30977079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential.
    Pelicano H; Zhang W; Liu J; Hammoudi N; Dai J; Xu RH; Pusztai L; Huang P
    Breast Cancer Res; 2014 Sep; 16(5):434. PubMed ID: 25209360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer.
    Lin Z; Xu HN; Wang Y; Floros J; Li LZ
    Adv Exp Med Biol; 2018; 1072():177-181. PubMed ID: 30178342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria.
    Giancaspero TA; Locato V; Barile M
    Oxid Med Cell Longev; 2013; 2013():612784. PubMed ID: 24078860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging Redox State in Mouse Muscles of Different Ages.
    Moon L; Frederick DW; Baur JA; Li LZ
    Adv Exp Med Biol; 2017; 977():51-57. PubMed ID: 28685427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between Optical Redox Status and Reactive Oxygen Species in Cancer Cells.
    Podsednik A; Jacob A; Li LZ; Xu HN
    React Oxyg Species (Apex); 2020 Mar; 9(26):95-108. PubMed ID: 32066994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer.
    Camorani S; Hill BS; Collina F; Gargiulo S; Napolitano M; Cantile M; Di Bonito M; Botti G; Fedele M; Zannetti A; Cerchia L
    Theranostics; 2018; 8(18):5178-5199. PubMed ID: 30429893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa.
    Maleki S; Gopalakrishnan S; Ghanian Z; Sepehr R; Schmitt H; Eells J; Ranji M
    J Biomed Opt; 2013 Jan; 18(1):16004. PubMed ID: 23291617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.