These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 33966842)
1. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Hu Y; Zhang M; Qin C; Qian X; Zhang L; Zhou J; Lu A Carbohydr Polym; 2021 Aug; 265():118078. PubMed ID: 33966842 [TBL] [Abstract][Full Text] [Related]
2. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423 [TBL] [Abstract][Full Text] [Related]
3. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123 [TBL] [Abstract][Full Text] [Related]
4. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Shu L; Wang Z; Zhang XF; Yao J Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872 [TBL] [Abstract][Full Text] [Related]
5. Transparent, Antifreezing, Ionic Conductive Cellulose Hydrogel with Stable Sensitivity at Subzero Temperature. Wang Y; Zhang L; Lu A ACS Appl Mater Interfaces; 2019 Nov; 11(44):41710-41716. PubMed ID: 31610651 [TBL] [Abstract][Full Text] [Related]
6. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Cheng Y; Zang J; Zhao X; Wang H; Hu Y Carbohydr Polym; 2022 Feb; 277():118872. PubMed ID: 34893277 [TBL] [Abstract][Full Text] [Related]
7. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
8. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator. Sun W; Liu X; Hua W; Wang S; Wang S; Yu J; Wang J; Yong Q; Chu F; Lu C Int J Biol Macromol; 2023 Sep; 248():125900. PubMed ID: 37481191 [TBL] [Abstract][Full Text] [Related]
9. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205 [TBL] [Abstract][Full Text] [Related]
10. Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator. Qin C; Lu A Carbohydr Polym; 2021 Nov; 274():118667. PubMed ID: 34702485 [TBL] [Abstract][Full Text] [Related]
11. Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. Ma W; Cao W; Lu T; Jiang Z; Xiong R; Samal SK; Huang C ACS Appl Mater Interfaces; 2021 Dec; 13(48):58048-58058. PubMed ID: 34842414 [TBL] [Abstract][Full Text] [Related]
12. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
13. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors. Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629 [TBL] [Abstract][Full Text] [Related]
14. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Zhao R; Fang Y; Zhao Z; Song S Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849 [TBL] [Abstract][Full Text] [Related]
15. Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors. Shu L; Zhang XF; Wu Y; Wang Z; Yao J Int J Biol Macromol; 2023 Jun; 240():124438. PubMed ID: 37060973 [TBL] [Abstract][Full Text] [Related]
16. Induction of polymer-grafted cellulose nanocrystals in hydrogel nanocomposites to increase anti-swelling, mechanical properties and conductive self-recovery for underwater strain sensing. Chen Y; Wu W; Cao X; Li B Int J Biol Macromol; 2024 Aug; 274(Pt 2):133410. PubMed ID: 38925178 [TBL] [Abstract][Full Text] [Related]
17. Anti-freezing hydrogel regulated by ice-structuring proteins/cellulose nanofibers system as flexible sensor for winter sports. Gao X; Wu J; Wang Y; Wang Y; Zhang Y; Nguyen TT; Guo M Int J Biol Macromol; 2024 Apr; 265(Pt 2):131118. PubMed ID: 38522685 [TBL] [Abstract][Full Text] [Related]
18. Tunable thermoresponsive and stretchable hydrogel sensor based on hydroxypropyl cellulose for human motion/health detection, visual signal transmission and information encryption. Zhou B; Yuan W Carbohydr Polym; 2024 Nov; 343():122497. PubMed ID: 39174144 [TBL] [Abstract][Full Text] [Related]
19. Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. Liu H; Wang X; Cao Y; Yang Y; Yang Y; Gao Y; Ma Z; Wang J; Wang W; Wu D ACS Appl Mater Interfaces; 2020 Jun; 12(22):25334-25344. PubMed ID: 32422039 [TBL] [Abstract][Full Text] [Related]
20. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]