BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33966850)

  • 1. Cellulosic nanofibers filled poly(β-hydroxybutyrate): Relations between viscoelasticity of composites and aspect ratios of nanofibers.
    Zhang W; Zhang G; Lu XA; Wang J; Wu D
    Carbohydr Polym; 2021 Aug; 265():118093. PubMed ID: 33966850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations.
    Lu Y; Li J; Ge L; Xie W; Wu D
    Carbohydr Polym; 2021 Mar; 255():117483. PubMed ID: 33436243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose.
    Geng S; Yao K; Zhou Q; Oksman K
    Biomacromolecules; 2018 Oct; 19(10):4075-4083. PubMed ID: 30130395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose nanofibers reinforced biodegradable polyester blends: Ternary biocomposites with balanced mechanical properties.
    Wang Y; Ying Z; Xie W; Wu D
    Carbohydr Polym; 2020 Apr; 233():115845. PubMed ID: 32059897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ethyl cellulose on the crystallization and mechanical properties of poly(β-hydroxybutyrate).
    Chen J; Wu D; Pan K
    Int J Biol Macromol; 2016 Jul; 88():120-9. PubMed ID: 27017982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate.
    Ruka DR; Simon GP; Dean KM
    Carbohydr Polym; 2013 Feb; 92(2):1717-23. PubMed ID: 23399211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/pullulan-gelatin electrospun nanofibers with shell-core structure.
    Sun F; Guo J; Liu Y; Yu Y
    Biomed Mater; 2020 Jun; 15(4):045023. PubMed ID: 32155607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the Micronization of Pulp Fibers on the Properties of Green Composites.
    Valente BFA; Silvestre AJD; Neto CP; Vilela C; Freire CSR
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach.
    Wang T; Drzal LT
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5079-85. PubMed ID: 22991937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.
    Fujisawa S; Saito T; Kimura S; Iwata T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1541-6. PubMed ID: 23540813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system.
    Kiziltas A; Nazari B; Erbas Kiziltas E; Gardner DJ; Han Y; Rushing TS
    Carbohydr Polym; 2016 Apr; 140():393-9. PubMed ID: 26876866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures.
    Zhang G; Xie W; Wu D
    Carbohydr Polym; 2020 Jan; 227():115341. PubMed ID: 31590874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate).
    Chen J; Xu C; Wu D; Pan K; Qian A; Sha Y; Wang L; Tong W
    Carbohydr Polym; 2015 Dec; 134():508-15. PubMed ID: 26428152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels.
    Pelissari FM; Andrade-Mahecha MM; Sobral PJDA; Menegalli FC
    J Colloid Interface Sci; 2017 Nov; 505():154-167. PubMed ID: 28577465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions.
    Tanaka R; Saito T; Hondo H; Isogai A
    Biomacromolecules; 2015 Jul; 16(7):2127-31. PubMed ID: 26010082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile dispersion strategy to prepare polylactic acid/reed straw nanofiber composites with enhanced mechanical and thermal properties.
    Wang H; Liu X; Liu J; Wu M; Huang Y
    Int J Biol Macromol; 2022 Nov; 221():278-287. PubMed ID: 36030979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and thermal properties of PLA-cellulose nanofibers composites.
    Frone AN; Berlioz S; Chailan JF; Panaitescu DM
    Carbohydr Polym; 2013 Jan; 91(1):377-84. PubMed ID: 23044146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and properties of polypyrrole/bacterial cellulose nanocomposites.
    Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM
    Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.