These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 33967683)

  • 1. Impact of Intensive Gait Training With and Without Electromechanical Assistance in the Chronic Phase After Stroke-A Multi-Arm Randomized Controlled Trial With a 6 and 12 Months Follow Up.
    Palmcrantz S; Wall A; Vreede KS; Lindberg P; Danielsson A; Sunnerhagen KS; Häger CK; Borg J
    Front Neurosci; 2021; 15():660726. PubMed ID: 33967683
    [No Abstract]   [Full Text] [Related]  

  • 2. A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke.
    Wall A; Borg J; Vreede K; Palmcrantz S
    PLoS One; 2020; 15(2):e0229707. PubMed ID: 32109255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study.
    Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H
    Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait pattern after electromechanically-assisted gait training with the Hybrid Assistive Limb and conventional gait training in sub-acute stroke rehabilitation-A subsample from a randomized controlled trial.
    Wall A; Palmcrantz S; Borg J; Gutierrez-Farewik EM
    Front Neurol; 2023; 14():1244287. PubMed ID: 37885482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of visuospatial and executive function on activity performance and outcome after robotic or conventional gait training, long-term after stroke-as part of a randomized controlled trial.
    Bergqvist M; Möller MC; Björklund M; Borg J; Palmcrantz S
    PLoS One; 2023; 18(3):e0281212. PubMed ID: 36893079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Gait Treatment With a Single-Leg Hybrid Assistive Limb System After Acute Stroke: A Non-randomized Clinical Trial.
    Watanabe H; Marushima A; Kadone H; Ueno T; Shimizu Y; Kubota S; Hino T; Sato M; Ito Y; Hayakawa M; Tsurushima H; Takada T; Tsukada A; Fujimori H; Sato N; Maruo K; Kawamoto H; Hada Y; Yamazaki M; Sankai Y; Ishikawa E; Matsumaru Y; Matsumura A
    Front Neurosci; 2019; 13():1389. PubMed ID: 32038125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual cue training to improve walking and turning after stroke: a study protocol for a multi-centre, single blind randomised pilot trial.
    Hollands KL; Pelton T; Wimperis A; Whitham D; Jowett S; Sackley C; Alan W; van Vliet P
    Trials; 2013 Sep; 14():276. PubMed ID: 24004882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy and Safety Study of Wearable Cyborg HAL (Hybrid Assistive Limb) in Hemiplegic Patients With Acute Stroke (EARLY GAIT Study): Protocols for a Randomized Controlled Trial.
    Watanabe H; Marushima A; Kadone H; Shimizu Y; Kubota S; Hino T; Sato M; Ito Y; Hayakawa M; Tsurushima H; Maruo K; Hada Y; Ishikawa E; Matsumaru Y
    Front Neurosci; 2021; 15():666562. PubMed ID: 34276288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-perceived functioning and disability after randomized conventional and electromechanically-assisted gait training in subacute stroke: A 6 months follow-up.
    Wall A; Borg J; Palmcrantz S
    NeuroRehabilitation; 2019 Dec; 45(4):501-511. PubMed ID: 31868699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of robot-(Morning Walk
    Kim J; Kim DY; Chun MH; Kim SW; Jeon HR; Hwang CH; Choi JK; Bae S
    Clin Rehabil; 2019 Mar; 33(3):516-523. PubMed ID: 30326747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of soft robotic exoskeleton for gait training on clinical and biomechanical gait outcomes in patients with sub-acute stroke: a randomized controlled pilot study.
    Xie R; Zhang Y; Jin H; Yang F; Feng Y; Pan Y
    Front Neurol; 2023; 14():1296102. PubMed ID: 38020601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study.
    Watanabe H; Goto R; Tanaka N; Matsumura A; Yanagi H
    NeuroRehabilitation; 2017; 40(3):363-367. PubMed ID: 28222558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study.
    Mizukami M; Yoshikawa K; Kawamoto H; Sano A; Koseki K; Asakwa Y; Iwamoto K; Nagata H; Tsurushima H; Nakai K; Marushima A; Sankai Y; Matsumura A
    Disabil Rehabil Assist Technol; 2017 Feb; 12(2):197-204. PubMed ID: 27017889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Randomized and Controlled Crossover Study Investigating the Improvement of Walking and Posture Functions in Chronic Stroke Patients Using HAL Exoskeleton - The HALESTRO Study (HAL-Exoskeleton STROke Study).
    Sczesny-Kaiser M; Trost R; Aach M; Schildhauer TA; Schwenkreis P; Tegenthoff M
    Front Neurosci; 2019; 13():259. PubMed ID: 30983953
    [No Abstract]   [Full Text] [Related]  

  • 17. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control.
    Yoshimoto T; Shimizu I; Hiroi Y; Kawaki M; Sato D; Nagasawa M
    Int J Rehabil Res; 2015 Dec; 38(4):338-43. PubMed ID: 26288120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Exploratory Clinical Study on an Automated, Speed-Sensing Treadmill Prototype With Partial Body Weight Support for Hemiparetic Gait Rehabilitation in Subacute and Chronic Stroke Patients.
    Chua K; Lim WS; Lim PH; Lim CJ; Hoo CM; Chua KC; Chee J; Ong WS; Liu W; Wong CJ
    Front Neurol; 2020; 11():747. PubMed ID: 32793109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body weight-supported treadmill training is no better than overground training for individuals with chronic stroke: a randomized controlled trial.
    Middleton A; Merlo-Rains A; Peters DM; Greene JV; Blanck EL; Moran R; Fritz SL
    Top Stroke Rehabil; 2014; 21(6):462-76. PubMed ID: 25467394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial.
    Louie DR; Mortenson WB; Durocher M; Schneeberg A; Teasell R; Yao J; Eng JJ
    J Neuroeng Rehabil; 2021 Oct; 18(1):149. PubMed ID: 34629104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.