BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33967705)

  • 1. The Hidden Brain: Uncovering Previously Overlooked Brain Regions by Employing Novel Preclinical Unbiased Network Approaches.
    Simpson S; Chen Y; Wellmeyer E; Smith LC; Aragon Montes B; George O; Kimbrough A
    Front Syst Neurosci; 2021; 15():595507. PubMed ID: 33967705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging Neural Networks in Preclinical Alcohol Research.
    Smith LC; Kimbrough A
    Brain Sci; 2020 Aug; 10(9):. PubMed ID: 32825739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the brain network: a review on resting-state fMRI functional connectivity.
    van den Heuvel MP; Hulshoff Pol HE
    Eur Neuropsychopharmacol; 2010 Aug; 20(8):519-34. PubMed ID: 20471808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review.
    Farahani FV; Karwowski W; Lighthall NR
    Front Neurosci; 2019; 13():585. PubMed ID: 31249501
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.
    Meyer-Bäse A; Roberts RG; Illan IA; Meyer-Bäse U; Lobbes M; Stadlbauer A; Pinker-Domenig K
    Front Comput Neurosci; 2017; 11():87. PubMed ID: 29051730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-wide functional architecture remodeling by alcohol dependence and abstinence.
    Kimbrough A; Lurie DJ; Collazo A; Kreifeldt M; Sidhu H; Macedo GC; D'Esposito M; Contet C; George O
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2149-2159. PubMed ID: 31937658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience.
    Tompson S; Falk EB; Vettel JM; Bassett DS
    Personal Neurosci; 2018 Jul; 1():. PubMed ID: 30221246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep brain stimulation for neurodegenerative disease: a computational blueprint using dynamic causal modeling.
    Moran R
    Prog Brain Res; 2015; 222():125-46. PubMed ID: 26541379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network neuroscience for optimizing brain-computer interfaces.
    De Vico Fallani F; Bassett DS
    Phys Life Rev; 2019 Dec; 31():304-309. PubMed ID: 30642781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
    Forouzannezhad P; Abbaspour A; Fang C; Cabrerizo M; Loewenstein D; Duara R; Adjouadi M
    J Neurosci Methods; 2019 Apr; 317():121-140. PubMed ID: 30593787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network Neuroscience: A Framework for Developing Biomarkers in Psychiatry.
    Lydon-Staley DM; Bassett DS
    Curr Top Behav Neurosci; 2018; 40():79-109. PubMed ID: 29626337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of brain network topology in HIV-associated neurocognitive disorder: A novel functional connectivity perspective.
    Abidin AZ; DSouza AM; Nagarajan MB; Wang L; Qiu X; Schifitto G; Wismüller A
    Neuroimage Clin; 2018; 17():768-777. PubMed ID: 29527484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach.
    Akiki TJ; Averill CL; Wrocklage KM; Scott JC; Averill LA; Schweinsburg B; Alexander-Bloch A; Martini B; Southwick SM; Krystal JH; Abdallah CG
    Neuroimage; 2018 Aug; 176():489-498. PubMed ID: 29730491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders.
    Deco G; Kringelbach ML
    Neuron; 2014 Dec; 84(5):892-905. PubMed ID: 25475184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroimaging signature of neuropsychiatric disorders.
    Worbe Y
    Curr Opin Neurol; 2015 Aug; 28(4):358-64. PubMed ID: 26110796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability.
    Gilson M; Kouvaris NE; Deco G; Mangin JF; Poupon C; Lefranc S; Rivière D; Zamora-López G
    Neuroimage; 2019 Nov; 201():116007. PubMed ID: 31306771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling time series between brain tissues improves fMRI data quality using a time-dependent deep neural network.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Cordes D;
    Neuroimage; 2020 Dec; 223():117340. PubMed ID: 32898682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The road ahead in clinical network neuroscience.
    Douw L; van Dellen E; Gouw AA; Griffa A; de Haan W; van den Heuvel M; Hillebrand A; Van Mieghem P; Nissen IA; Otte WM; Reijmer YD; Schoonheim MM; Senden M; van Straaten ECW; Tijms BM; Tewarie P; Stam CJ
    Netw Neurosci; 2019; 3(4):969-993. PubMed ID: 31637334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From brain topography to brain topology: relevance of graph theory to functional neuroscience.
    Minati L; Varotto G; D'Incerti L; Panzica F; Chan D
    Neuroreport; 2013 Jul; 24(10):536-43. PubMed ID: 23660679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.