These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33967733)

  • 1. A Framework for Optimizing Co-adaptation in Body-Machine Interfaces.
    De Santis D
    Front Neurorobot; 2021; 15():662181. PubMed ID: 33967733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building an adaptive interface via unsupervised tracking of latent manifolds.
    Rizzoglio F; Casadio M; De Santis D; Mussa-Ivaldi FA
    Neural Netw; 2021 May; 137():174-187. PubMed ID: 33636657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guiding functional reorganization of motor redundancy using a body-machine interface.
    De Santis D; Mussa-Ivaldi FA
    J Neuroeng Rehabil; 2020 May; 17(1):61. PubMed ID: 32393288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised adaptation of brain-machine interface decoders.
    Gürel T; Mehring C
    Front Neurosci; 2012; 6():164. PubMed ID: 23162425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remapping residual coordination for controlling assistive devices and recovering motor functions.
    Pierella C; Abdollahi F; Farshchiansadegh A; Pedersen J; Thorp EB; Mussa-Ivaldi FA; Casadio M
    Neuropsychologia; 2015 Dec; 79(Pt B):364-76. PubMed ID: 26341935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive user interfaces in complex supervisory tasks.
    Yen GG; Acay D
    ISA Trans; 2009 Apr; 48(2):196-205. PubMed ID: 19084225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lifelong Personalization
    Spaulding S; Shen J; Park HW; Breazeal C
    Front Robot AI; 2021; 8():683066. PubMed ID: 34164437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation.
    Bauer R; Gharabaghi A
    Front Neurosci; 2015; 9():36. PubMed ID: 25729347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
    Abu-Alqumsan M; Ebert F; Peer A
    J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic goal adapted task oriented dialogue agent.
    Tiwari A; Saha T; Saha S; Sengupta S; Maitra A; Ramnani R; Bhattacharyya P
    PLoS One; 2021; 16(4):e0249030. PubMed ID: 33793633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoder-decoder optimization for brain-computer interfaces.
    Merel J; Pianto DM; Cunningham JP; Paninski L
    PLoS Comput Biol; 2015 Jun; 11(6):e1004288. PubMed ID: 26029919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Sanchez JC; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5402-5. PubMed ID: 24110957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic co-adaptive brain-computer interfacing.
    Bryan MJ; Martin SA; Cheung W; Rao RP
    J Neural Eng; 2013 Dec; 10(6):066008. PubMed ID: 24140680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model for the two-learners problem.
    Müller JS; Vidaurre C; Schreuder M; Meinecke FC; von Bünau P; Müller KR
    J Neural Eng; 2017 Jun; 14(3):036005. PubMed ID: 28224972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and impact of bias in human and machine learning algorithm interaction.
    Sun W; Nasraoui O; Shafto P
    PLoS One; 2020; 15(8):e0235502. PubMed ID: 32790666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.