These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 339688)

  • 41. The structure and function of acid proteases. III. Isolation and characterization of the active-site peptides from bovine rennin.
    Chang WJ; Takahashi K
    J Biochem; 1974 Sep; 76(3):467-74. PubMed ID: 4612029
    [No Abstract]   [Full Text] [Related]  

  • 42. Determination of pepsin-susceptible and pepsin-resistant epitopes in native and heat-treated peanut allergen Ara h 1.
    van Boxtel EL; Koppelman SJ; van den Broek LA; Gruppen H
    J Agric Food Chem; 2008 Mar; 56(6):2223-30. PubMed ID: 18298062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved pepsin inhibitor derived from activation peptide 1-16 of porcine pepsinogen.
    Harish Kumar PM; Kassell B
    Biochemistry; 1977 Aug; 16(17):3846-9. PubMed ID: 332223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amino acid sequence of penicillopepsin. II. Isolation and characterization of thermolytic peptides.
    Rao L; Hofmann T
    Can J Biochem; 1976 Oct; 54(10):885-94. PubMed ID: 791464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of pepsin catalysis: general base catalysis by the active-site carboxylate ion.
    Antonov VK; Ginodman LM; Kapitannikov YV; Barshevskaya TN; Gurova AG; Rumsh LD
    FEBS Lett; 1978 Apr; 88(1):87-90. PubMed ID: 346376
    [No Abstract]   [Full Text] [Related]  

  • 46. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution.
    Sielecki AR; Fedorov AA; Boodhoo A; Andreeva NS; James MN
    J Mol Biol; 1990 Jul; 214(1):143-70. PubMed ID: 2115087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products.
    Crane BR; Siegel LM; Getzoff ED
    Biochemistry; 1997 Oct; 36(40):12120-37. PubMed ID: 9315849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differences in the P1' substrate specificities of pepsin A and chymosin.
    Kageyama H; Ueda H; Tezuka T; Ogasawara A; Narita Y; Kageyama T; Ichinose M
    J Biochem; 2010 Feb; 147(2):167-74. PubMed ID: 19819898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The rate-determining step in pepsin-catalysed reactions, and evidence against an acyl-enzyme intermediate.
    Cornish-Bowden AJ; Greenwell P; Knowles JR
    Biochem J; 1969 Jun; 113(2):369-75. PubMed ID: 4897200
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with alpha-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4.
    Melchior WB; Fahrney D
    Biochemistry; 1970 Jan; 9(2):251-8. PubMed ID: 4904867
    [No Abstract]   [Full Text] [Related]  

  • 51. An aspartic acid residue at the active site of pepsin. The isolation and sequence of the heptapeptide.
    Bayliss RS; Knowles JR; Wybrandt GB
    Biochem J; 1969 Jun; 113(2):377-86. PubMed ID: 4897201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large peptides of bovine and guinea pig myelin basic proteins produced by limited peptic hydrolysis.
    Martenson RE; Kramer AJ; Deibler GE
    Biochemistry; 1975 Mar; 14(5):1067-73. PubMed ID: 47756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peptide inhibitor modified magnetic particles for pepsin separation.
    Filuszová M; Kucerová Z; Tichá M
    J Sep Sci; 2009 Jun; 32(12):2017-21. PubMed ID: 19479760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of the pepsin catalyzed hydrolysis of diphenyl sulfite by N-acetyl-L-phenyl-alanine, 3,5-dibromo-L-tryosine and N-acetyl-L-phenylalanyl-3,5-dibromo-L-tyrosine.
    Zeffren D; Kaiser ET
    Arch Biochem Biophys; 1968 Sep; 126(3):965-7. PubMed ID: 4879703
    [No Abstract]   [Full Text] [Related]  

  • 55. Aspartic acid-121 functions at the active site of bovine pancreatic ribonuclease.
    Stern MS; Doscher MS
    FEBS Lett; 1984 Jun; 171(2):253-6. PubMed ID: 6427012
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transpeptidation reactions of porcine pepsin. Formation of tetrapeptides from dipeptide substrates.
    Lutek MK; Hofmann T; Deber CM
    J Biol Chem; 1988 Jun; 263(17):8011-6. PubMed ID: 3131336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aspartic proteinases--Fourier transform IR studies of the aspartic carboxylic groups in the active site of pepsin.
    Iliadis G; Zundel G; Brzezinski B
    FEBS Lett; 1994 Oct; 352(3):315-7. PubMed ID: 7925992
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Conformational aspects of peptide interaction with proteolytic enzymes. Effect of amino acid residue configuration on binding of stereoisomeric N-acetylleucyltyrosine and N-acetyltyrosylleucine methylamides with pepsin].
    Tsetlin VI; Shchepel EN; Ivanov BY; Occhinnikov LU
    Biokhimiia; 1975; 40(2):347-52. PubMed ID: 1106776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Affinity labeling of myoglobin with mesoheme sulfuric anhydride.
    Warme PK; Hager LP
    Biochemistry; 1970 Oct; 9(22):4237-44. PubMed ID: 4919543
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.