These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33969280)

  • 21. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration.
    Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration.
    Nie W; Gao Y; McCoul DJ; Gillispie GJ; Zhang Y; Liang L; He C
    Int J Nanomedicine; 2019; 14():3929-3941. PubMed ID: 31213809
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds.
    Gendviliene I; Simoliunas E; Alksne M; Dibart S; Jasiuniene E; Cicenas V; Jacobs R; Bukelskiene V; Rutkunas V
    Eur Cell Mater; 2021 Feb; 41():204-215. PubMed ID: 33641140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration.
    Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H
    J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration.
    Dong C; Qiao F; Chen G; Lv Y
    J Mater Chem B; 2021 Sep; 9(34):6881-6894. PubMed ID: 34612335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive oxygen-scavenging polydopamine nanoparticle coated 3D nanofibrous scaffolds for improved osteogenesis: Toward an aging in vivo bone regeneration model.
    Miszuk J; Hu J; Wang Z; Onyilagha O; Younes H; Hill C; Tivanski AV; Zhu Z; Sun H
    J Biomed Mater Res B Appl Biomater; 2024 Aug; 112(8):e35456. PubMed ID: 39031923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2.
    Subramanian G; Bialorucki C; Yildirim-Ayan E
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():16-27. PubMed ID: 25842103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.
    Song J; Zhu G; Wang L; An G; Shi X; Wang Y
    Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation.
    Seyedjafari E; Soleimani M; Ghaemi N; Shabani I
    Biomacromolecules; 2010 Nov; 11(11):3118-25. PubMed ID: 20925348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration.
    Ali IH; Khalil IA; El-Sherbiny IM
    Int J Biol Macromol; 2019 Sep; 136():154-164. PubMed ID: 31195040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.