These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33969551)

  • 41. 4D Origami by Smart Embroidery.
    Stoychev G; Razavi MJ; Wang X; Ionov L
    Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28759164
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.
    Luan H; Zhang Q; Liu TL; Wang X; Zhao S; Wang H; Yao S; Xue Y; Kwak JW; Bai W; Xu Y; Han M; Li K; Li Z; Ni X; Ye J; Choi D; Yang Q; Kim JH; Li S; Chen S; Wu C; Lu D; Chang JK; Xie Z; Huang Y; Rogers JA
    Sci Adv; 2021 Oct; 7(43):eabj3686. PubMed ID: 34669471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion.
    Jiang ZC; Xiao YY; Tong X; Zhao Y
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5332-5337. PubMed ID: 30816599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics.
    Liu Q; Wang W; Reynolds MF; Cao MC; Miskin MZ; Arias TA; Muller DA; McEuen PL; Cohen I
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Smart Silk Origami as Eco-sensors for Environmental Pollution.
    Matthew SAL; Egan G; Witte K; Kaewchuchuen J; Phuagkhaopong S; Totten JD; Seib FP
    ACS Appl Bio Mater; 2022 Aug; 5(8):3658-3666. PubMed ID: 35575686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Printing ferromagnetic domains for untethered fast-transforming soft materials.
    Kim Y; Yuk H; Zhao R; Chester SA; Zhao X
    Nature; 2018 Jun; 558(7709):274-279. PubMed ID: 29899476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increasing the Dimensionality of Soft Microstructures through Injection-Induced Self-Folding.
    Ranzani T; Russo S; Bartlett NW; Wehner M; Wood RJ
    Adv Mater; 2018 Sep; 30(38):e1802739. PubMed ID: 30079470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vapomechanically Responsive Motion of Microchannel-Programmed Actuators.
    Zhang L; Naumov P; Du X; Hu Z; Wang J
    Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28758260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation.
    Ze Q; Kuang X; Wu S; Wong J; Montgomery SM; Zhang R; Kovitz JM; Yang F; Qi HJ; Zhao R
    Adv Mater; 2020 Jan; 32(4):e1906657. PubMed ID: 31814185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges.
    Sun W; Schaffer S; Dai K; Yao L; Feinberg A; Webster-Wood V
    Front Robot AI; 2021; 8():673533. PubMed ID: 33996931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-energy-density shape memory materials with ultrahigh strain for reconfigurable artificial muscles.
    Zheng X; Chen Y; Chen C; Chen Z; Guo Y; Li H; Liu H
    J Mater Chem B; 2021 Sep; 9(36):7371-7380. PubMed ID: 34551055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liquid Crystal Networks on Thermoplastics: Reprogrammable Photo-Responsive Actuators.
    Verpaalen RCP; Pilz da Cunha M; Engels TAP; Debije MG; Schenning APHJ
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4532-4536. PubMed ID: 31922315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Programming 2D/3D shape-shifting with hobbyist 3D printers.
    van Manen T; Janbaz S; Zadpoor AA
    Mater Horiz; 2017 Nov; 4(6):1064-1069. PubMed ID: 29308207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrathin Shape Change Smart Materials.
    Xu W; Kwok KS; Gracias DH
    Acc Chem Res; 2018 Feb; 51(2):436-444. PubMed ID: 29359913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Origami-based integration of robots that sense, decide, and respond.
    Yan W; Li S; Deguchi M; Zheng Z; Rus D; Mehta A
    Nat Commun; 2023 Apr; 14(1):1553. PubMed ID: 37012246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots.
    Schmauch MM; Mishra SR; Evans BA; Velev OD; Tracy JB
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11895-11901. PubMed ID: 28349697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Soft Pneumatic Gripper With a Tendon-Driven Soft Origami Pump.
    Kim Y; Cha Y
    Front Bioeng Biotechnol; 2020; 8():461. PubMed ID: 32548096
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer.
    Glugla DJ; Alim MD; Byars KD; Nair DP; Bowman CN; Maute KK; McLeod RR
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29658-29667. PubMed ID: 27802605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers.
    Yuan C; Roach DJ; Dunn CK; Mu Q; Kuang X; Yakacki CM; Wang TJ; Yu K; Qi HJ
    Soft Matter; 2017 Aug; 13(33):5558-5568. PubMed ID: 28721407
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-responsive actuators based on a graphene oxide composite: intelligent robot and bioinspired applications.
    Chen L; Weng M; Zhou P; Zhang L; Huang Z; Zhang W
    Nanoscale; 2017 Jul; 9(28):9825-9833. PubMed ID: 28585961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.